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Abstract. Addressing the large distribution gap between training and
testing data has long been a challenge in machine learning, giving rise to
fields such as transfer learning and domain adaptation. Recently, Contin-
uous Domain Adaptation (CDA) has emerged as an effective technique,
closing this gap by utilizing a series of intermediate domains. This paper
contributes a novel CDA method, W-MPOT, which rigorously addresses
the domain ordering and error accumulation problems overlooked by pre-
vious studies. Specifically, we construct a transfer curriculum over the
source and intermediate domains based on Wasserstein distance, moti-
vated by theoretical analysis of CDA. Then we transfer the source model
to the target domain through multiple valid paths in the curriculum us-
ing a modified version of continuous optimal transport. A bidirectional
path consistency constraint is introduced to mitigate the impact of ac-
cumulated mapping errors during continuous transfer. We extensively
evaluate W-MPOT on multiple datasets, achieving up to 54.1% accu-
racy improvement on multi-session Alzheimer MR image classification
and 94.7% MSE reduction on battery capacity estimation.

Keywords: Continuous Domain Adaptation · Wasserstein distance ·
Transfer curriculum · Optimal Transport · Path Consistency regulariza-
tion.

1 Introduction

Domain shift is a common challenge in many real life applications [16]. For ex-
ample, in medical imaging, models trained on the data from one institution may
not generalize well to another institution with different imaging hardware. Sim-
ilarly, in battery capacity monitoring, models trained on lab-collected data may
perform poorly under diverse operation environments. Obtaining the annotation
for the new domains, however, is often very costly or infeasible. To address this
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challenge, Unsupervised Domain Adaptation (UDA) has been proposed, lever-
aging the labeled data from the source domain to improve the performance of
learning models on the unlabeled target domain [5]. In particular, UDA aims
to align the distributions of the source and target domains using labeled source
data and unlabeled target data, typically by learning domain-invariant represen-
tations [13] or adversarial learning schemes. Nevertheless, one challenge of UDA
is its limited effectiveness when confronted with significant domain shift. Studies
conducted by Zhao et al. [18] have shed light on the relationship between the
domain shift and generalization error in UDA. They have shown that the effec-
tiveness of UDA is bounded by the distributional divergence between the source
and target domain, so the performance of the adapted model on the target do-
main may not be satisfactory with a substantial domain shift. In addressing this
challenge, many works studied the problem of Continuous Domain Adaptation
(CDA) [17].

Instead of directly adapting the model from the source to the target do-
main, CDA captures the underlying domain continuity leveraging a stream of
observed intermediate domains, and gradually bridges the substantial domain
gap by adapting the model progressively. There are various applications of CDA
requiring continuous domains with indexed metadata [6,9]. For example, in med-
ical data analysis, age acts as a continuous metadata for disease diagnosis across
patients of different age groups. In the online battery capacity estimation prob-
lem, the state of health (SoH) of the battery acts as a continuous metadata that
differs across batteries. CDA has attracted a great deal of attention and gained
a rapid performance boost by self-training [7, 19], pseudo-labeling [8], adversar-
ial algorithms, optimal transport (OT) [10] and so on. In particular, Oritiz et
al. [10] designed an efficient forward-backward splitting optimization algorithm
for continuous optimal transport (COT) and demonstrated the efficacy of OT in
reducing the domain shift and improving the performance of adaptation models.

While there have been significant advances in CDA, it still faces two critical
challenges, determining the transfer order of intermediate domains in the ab-
sence of continuous metadata and mitigating cumulative errors throughout the
continuous adaptation process. For the first issue, metadata could be missing
or incorrect, and sometimes metadata alone can not fully explain the difference
between data distributions. The proper ordering of intermediate domains is sig-
nificant for CDA in transferring knowledge all the way to the target domain.
Indeed, it is necessary to order the intermediate domains to facilitate continu-
ous transfer without relying on explicit metadata. As a divergence measurement
that takes into account the geometry of the data distributions, Wasserstein dis-
tance (w-distance) [15] plays an important role in deriving the generalization
bound in domain adaptation, which implies the effectiveness of reducing domain
divergence in the Wasserstein space. In this work, we propose a transfer cur-
riculum in the Wasserstein space, aimed at determining the optimal sequence
of intermediate domains for better knowledge transfer. The incorporation of
Wasserstein-based transfer curriculum provides a principled and effective way to
order the intermediate domains, enabling more precise and controlled knowledge
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transfer. A more comprehensive discussion regarding the process of selecting the
appropriate transfer sequence, which ultimately leads to a tighter generalization
bound, will be provided in the method section.

For the second issue, as the model progressively adapts to new domains, er-
rors can accumulate and degrade the overall performance. The accumulation of
errors can occur during CDA due to the successive estimation of pseudo-labels
or intermediate adaptation results, e.g., the error accumulates during each pro-
jection of source domain data based on the estimated optimal transport map
in [10]. Fourier domain filtering possesses the capability to mitigate cumulative
errors [4], but its efficacy is limited to fixed frequencies of errors, thereby exhibit-
ing inadequacies in terms of flexibility and robustness. To tackle this challenge,
we introduce a path consistency regularization scheme for OT-based CDA in-
spired by [10]. Our multi-path regularization scheme enforces consistency among
multiple transfer paths, effectively reducing the impact of accumulated errors
and improving the robustness and stability of the transferred model.

In summary, the main contribution of this work lies in four aspects:

1) W-MPOT: The paper proposes a novel CDA framework, named W-MPOT,
which incorporates a Wasserstein-based transfer curriculum and multi-path
consistency regularization, providing a principled and effective solution for
CDA in scenarios where explicit metadata is unavailable.

2) Wasserstein-based Transfer Curriculum: The method employs w-distance
to devise the transfer curriculum, providing theoretical proofs and general-
ization upper bounds on the error incurred by improper sorting based on
w-distance.

3) Multi-Path Optimal Transport: The paper introduces a multi-path do-
main adaptation method based on Optimal Transport, namely MPOT, to
enforce consistency among multiple adaptation paths. By mitigating the im-
pact of accumulated errors during continuous transfer, MPOT significantly
enhances the overall performance and stability of the adaptation process.

4) Comprehensive Empirical Validation: We conduct a thorough set of ex-
periments to validate the motivation and effectiveness of our proposed meth-
ods. These experiments cover various domains, including ADNI, Battery
Charging-discharging Capacity and Rotated MNIST datasets, and demon-
strate the superiority of our approach compared to alternative methods.

2 Methodology

2.1 Preliminary

We employ optimal transport (OT) to map the source domain into the target
domain. OT provides a measurement of the divergence between two probability
distributions by finding an optimal transportation plan that minimizes the total
cost of mapping one distribution to the other [2]. Detailed explanations regarding
OT can be found in Supplementary A.
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Fig. 1. Illustration of our proposed W-MPOT. (a) In the Rotated MNIST ex-
ample, we are given a source domain of 0 degrees and a target/intermediate domain
set with unknown degrees. (b) In our proposed W-MPOT, we address the challenge of
unknown domain metadata (angles) and perform CDA. We utilize Wasserstein based
transfer curriculum to sort intermediate domains and employ MPOT to enforce con-
sistency, thereby enhancing the transfer effectiveness.

Consider the scenario where a labeled source domain and a collection of
unlabeled auxiliary domains are available. Let X ⊂ Rd be the feature space
and Y ⊂ R be the label space. Denote the source domain and target domain
as DS = {(xj , yj)}NS

j=1, DT = {xj}NT

j=1, where NS and NT are the number of
samples in the source domain and target domain, respectively. The candidate set
of intermediate domains is detonated as DI = {DI1 , DI2 , . . . , DIK}, where each

domain is denoted as DIk = {xj}
NIk
j=1 , k = 1, . . . ,K and NIk denotes the number

of unlabeled data. Let µS , µIk , µT ∈ P(X ) be the probability measures on Rd

for the source, intermediate, and target domains, respectively. The objective is
to make predictions {ŷj}NT

j=1 for samples in the target domain.
While the order of intermediate domains in CDA can be determined using

available metadata, the challenge arises when the metadata is absent, requiring
further efforts to determine the proper order for CDA. Given the K candidate
intermediate domains, a transfer curriculum defines an ordered sequence of N
domains from DI , denoted as D̂I , to be used as intermediate domains for the
CDA.

2.2 Method Framework

The framework of our proposed W-MPOT, comprising the Wasserstein-based
transfer curriculum module and the Multi-Path Optimal Transport (MPOT)
module, is depicted in Fig. 1. The Wasserstein-based transfer curriculum module
selects an optimal intermediate domain sequence D̂I for a given target domain
DT . Specifically, after calculating the w-distance [15] between each intermedi-
ate domain and the source domain, we sort intermediate domains closer to the
source than the target domain by their w-distances. In the MPOT module, we
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adopt COT [10] to transfer the source domain knowledge through the sorted
intermediate domain sequence, and finally adapt to the target domain in an
unsupervised manner. A multi-path consistency term is proposed to regularize
the continuous adaptation. Since the divergence between the source and target
domains is minimized by the OT-based adaptation process, the final prediction
for the target domain can be derived by a regressor or classifier trained on the
transported source domain.

2.3 Wasserstein-based Transfer Curriculum

Properly ordering the intermediate domains ensures a more effective transfer of
knowledge. Here we present the motivation for arranging intermediate domains
in the Wasserstein space with a simple example.

Given the labeled source domain DS , the target domain DT and two can-
didate intermediate domains DI1 and DI2 . We assume that the optimal trans-
fer order is DS → DI1 → DI2 → DT , i.e., the intermediate domain DI1 is
closer to DS than to DT2 . Apparently, another possible transfer order would be
DS → DI2 → DI1 → DT . We first present the generalization bound proposed
by [12] which relates the source and target errors using w-distance. Let µI1 ,
µI2 ∈ P(X ) be the probability measures for domains DI1 , DI2 , respectively. h
and f denote the predicted hypothesis and the true labeling function, respec-
tively. ϵµ(h, f) = Ex∼µ [|h(x)− f(x)|] and ϵ is the combined error of the ideal
hypothesis h∗. Assume that all hypotheses in the hypothesis set H satisfies the
A-Lipschitz continuous condition for some A.

By simply applying the lemma proposed in [12] to each source-target pairs
(DS , DI1), (DI1 , DI2) and (DI2 , DT ), the generalization bound of the transfer
path DS → DI1 → DI2 → DT could be derived as the following equation. For a
detailed explanation of the lemma, please refer to Supplementary B.

ϵµT
(h, f) ≤ ϵµS

(h, f) + 2A · W1 (µS , µI1)

+ 2A · W1 (µI1 , µI2) + 2A · W1 (µI2 , µT ) + ϵ,
(1)

Similarly, for another transfer path DS → DI2 → DI1 → DT , the generaliza-
tion bound is

ϵµT
(h, f) ≤ ϵµS

(h, f) + 2A · W1 (µS , µI2)

+ 2A · W1 (µI2 , µI1) + 2A · W1 (µI1 , µT ) + ϵ,
(2)

where ϵ is the same. According to the optimal transfer path assumption, it is
straightforward to getW1 (µS , µI2) > W1 (µS , µI1), andW1 (µI1 , µT ) > W1 (µI2 , µT ).
Therefore, better domain transfer order DS → DI1 → DI2 → DT will lead to
tighter generalization bound. The optimal transfer path order will achieve better
performance on the target domain than the other, which justifies the use of the
w-distance in our transfer curriculum.

This result leads to our Wasserstein-based transfer curriculum to select and
sort for intermediate domains. We use the following form of w-distance to mea-
sure the closeness between each intermediate domain DIk and the source domain
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DS ,
Wk = min

γ
⟨γk,Mk⟩F + λ ·Ω(γk)

s.t. γk1 = µS γT
k 1 = µIk , k = 1, . . . ,K,

(3)

where γk ≥ 0 is the transport matrix and Mk is the cost matrix between the
distribution µS and µIk . Wk measures the similarity between each intermediate
domain and the source domain, i.e., the greater the Wk is, the farther the inter-
mediate domain is from the source domain. Note that any intermediate domain
that is further from the source domain than the target domain is discarded. The
remaining N domains in the intermediate domain set are then sorted in order
of Wk and we could obtain a domain sequence D̂I = D̂I1 → D̂I2 → . . . → D̂IN ,
where W1 ≤ W2 . . . ≤ WN . As a result, the Wasserstein-based transfer curricu-
lum generates a sorted transfer sequence D̂I that represents the desired order
of the domains, arranged from those closer to the source domain to those far-
ther away. By utilizing the w-distance to sort multiple intermediate domains, we
eliminate the need for meta-information.

2.4 Multi-Path Optimal Transport

We apply OT-based domain adaptation iteratively across each intermediate do-
main indexed by the proposed curriculum. In order to make predictions for the
target domain DT , MPOT constructs sequential transport plans, denoted as γm,
through a series of successive steps from the source to the target domain. The
steps are as follows. Given the sorted sequence of intermediate domain D̂I , the
source domain is initially mapped to the first intermediate domain D̂I1 using
direct OT [2] and we can derive the first transport plan γ0. Following this, the

barycentric mapping of the source domain to the first intermediate domain D̂I1

can be defined by a weighted barycenter of its neighbors, BI1(DS) = NS ·γ0 ·D̂I1 .

The distribution of the mapped source domain on D̂I1 is denoted as µSI1 , which
is consistent with the distribution of the target intermediate domain µI1 .

Then for the following intermediate domains, D̂In , n ∈ 2, . . . , N , the prob-

abilistic coupling γn−1 between the domain D̂In−1
and the subsequent domain

D̂In is calculated using COT [10],

γn−1 = argmin
γ∈RNS×NT

〈
γ,M[n−1,n]

〉
+ λΩ(γ) + ηtRt(γ)

s.t. γ1 = µSIn−1 γT1 = µIn γ ≥ 0,

(4)

where M[n−1,n] is the cost matrix defining the cost to move mass from the
distribution of µSIn−1

to µIn . Ω(·) denotes the entropic regularization term
Ω(γ) =

∑
i,j γi,j log (γi,j), and λ > 0 is the weight of entropic regularization.

Rt(·) is a time regularizer with coefficients ηt > 0, which aims to enforce smooth-
ness and coherence across consecutive time steps [10].

Upon the completion of the sequential transfer from the source domain to
all intermediate domains, the transport plan γN from D̂IN to the target domain
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DT will be computed using MPOT with the equation as follows,

γN = argmin
γ∈RNS×NT

〈
γ,M[N,N+1]

〉
+ λΩ(γ) + ηtRt(γ) + ηpRp(γ, γp2)

s.t. γ1 =µSIN γT1 = µT γ ≥ 0,

(5)

where M[N,N+1] is the cost matrix between the distribution µSIN and µT . ηt > 0
and ηp > 0 are the coefficients to adjust the weights. We further introduce a path
consistency regularizer Rp(·) by comparing it with another transfer path,

Rp(γ, γp2) =
∥∥∥NS · γ · D̂In −NS · γp2 · D̂In

∥∥∥2
F
, (6)

where γp2
is the transport plan of the second possible path which is utilized to

refine the γ of Path 1. During each adaptation step across intermediate domains
in the curriculum, the incremental steps introduce minor inaccuracies, poten-
tially impacting overall transfer performance over time. By employing Rp(·), we
exploit the complementary information present in diverse paths to alleviate the
accumulation of errors. The continuous adaptation results of the original COT
and our proposed MPOT on the simulated half-moon dataset are shown in Fig.2.

GT Target Samples

Mapped Source Samples+
(a) COT (b) MPOT

Fig. 2. The Effect of Multi-Path regularization on the Optimal Transport of
source domain sample. Visual experiments are conducted on simulated half-moon
data to compare the migration effects of (a) COT with our proposed (b) MPOT. The
source domain has an angle of 0 degrees, and the angles on the graph increase by 36
degrees from left to right. (a) and (b) depict the mapping results obtained by applying
the COT and MPOT methods respectively to sequentially map the source domain to
the target domains. The triangles represent the ground truth target domain data, while
the plus signs represent the mapped source domain data after the adaptation.

During continuous adaptation, the COT method experiences a substantial
increase in cumulative error, leading to deteriorating adaptation results as the
rotation angle increases. In contrast, our proposed method, MPOT, effectively
addresses the issue of cumulative errors by leveraging multiple transfer paths.

Notablely, the paths interact in a bidirectional manner within Rp(·): not only
does Path 2 impose constraints on Path 1, but Path 1 likewise restricts Path 2.
This creates a reciprocal dynamic and both paths can be jointly optimized simul-
taneously. Moreover, the above OT problem (5) fits into the forward-backward
splitting algorithm [1] as in [10], whose solution could be efficiently computed
with the Sinkhorn algorithm [3]. More details about the solution for the Sinkhorn
algorithm are given in Supplementary C. Let J (·) be the combination of reg-
ularization terms. The details of the bidirectional optimization procedure are
depicted in the subsequent Algorithm 1.
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Algorithm 1: Bidirectional Optimization algorithm in MPOT

Input: Transport matrix of Path 1 γp1 , Transport matrix of Path 2 γp2 , step
size α, cost matrix of Path 1 M[1], cost matrix of Path 2 M[2], weight
of Path 1 λ1 and Path 2 λ2, iteration times c

Output: Refined transport matrix from N -th intermediate domain to target
domain γ′

N

1 Initialize: γ0 ∈ (0,+∞)NS×NT

2 for c← 0, 1, ... do

3 M
[1]
c = αM[N,N+1] + α∇J (γc, γp2)

4 M
[2]
c = αM[N,N+1] + α∇J (γc, γp1)

5 Mc = λ1M
[1]
c + λ2M

[2]
c

6 γc+1 = Sinkhorn (Mc, 1 + αλ, µSIN , µT )

7 γ′
N = γ∞

Once the refined transport matrix, denoted as γ′
N , has been computed, the

barycentric mapping from the mapped source domain to the target domain can

be obtained by using BT (D
IN
S ) = NS · γ′

N ·DT , where D
Ij
S denotes the domain

mapped from the source domainDS to D̂Ij . Consequently, a classifier or regressor

can be trained on BT (D
IN
S ) using the available source labels and can be directly

deployed on the target domain for various applications.

3 Experimental Results

3.1 Datasets and Experimental Configurations

Experiments are conducted on three datasets, each offering unique characteristics
and challenges. Details regarding the implementation are presented in Supple-
mentary D.

ADNI. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is
a crucial resource for Alzheimer’s disease research, housing a repository of MRI
images that furnish in-depth structural insights into the brain [11]. The 3D MRI
data is sliced along the direction of the vertical spinal column, resulting in 2D
MRI images. The 2D MRI images are categorized into a source domain (ages
50-70, 190 samples) and intermediate domains (ages 70-72, 72-74, 74-76, 76-
78, 78-82, 82-92, 50 samples each). The primary task is classifying MRI images
into five disease categories. In our ADNI MRI image experiments (128 × 128
dimensions), we performed image normalization to a 0-1 range. Subsequently,
we utilized a pre-trained VGG16 model, originally trained on the ImageNet
dataset, to extract image features. The VGG16 model’s output consists of a
512×4×4 feature map, which is condensed into a 16-dimensional feature vector
by averaging across the channel dimension.

Battery Charging-discharging Capacity. The capacity of lithium-ion
batteries holds paramount significance in the context of power systems and elec-
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tric vehicles. Laboratory experiments are conducted via a pulse test [20] to col-
lect voltage-capacity data pairs on batteries during charging and discharging
processes at different state of charge (SoC) levels. The dataset includes a source
domain (5% SoC) and nine intermediate domains (10%-50% SoC), each with 67
samples. It is a regression problem evaluated with Mean Squared Error (MSE).

Rotated MNIST. The Rotated MNIST dataset is a variation of the MNIST
dataset, featuring rotated digit images. It is divided into five domains with dif-
ferent rotation angles. The source domain (0 degrees) and intermediate domains
(18, 36, 54, 72, and 90 degrees) each contain 1000 samples.

3.2 Analysis of Wasserstein-based Transfer Curriculum

This section assesses the effectiveness of our proposed Wasserstein-based trans-
fer curriculum, comparing it with two alternative domain adaptation methods.
We examine Directly Optimal Transport (DOT), which transfers data directly
from the source to the target domain, and Continuously Optimal Transport
(COT), a progressive adaptation approach. COT is explored in two configu-
rations: COT+Metadata, utilizing genuine domain metadata for sorting inter-
mediate domains, and COT+W-dis, employing our Wasserstein-based transfer
curriculum in the absence of metadata. In our experimental design, we maintain
consistency between the source and target domains across all methods.

As shown in Fig. 3, the superior performance of COT over DOT, coupled with
the comparable performance between COT utilizing w-distance and COT with
true metadata, shows the effect of intermediate domain sorting. The impact
of varying the number of intermediate domains differs across datasets, which
is determined by the inherent characteristics of the data itself. These findings
highlight the benefits of incorporating COT and the Wasserstein distributional
geometric relationships.

(a) Rotated MNIST (b) ADNI (c) Battery

Fig. 3. Domain ordering Results. The results for the (a)Rotated MNIST, (b)ADNI,
and (c)Battery Charging-discharging Capacity datasets are shown in this figure. The
evaluation metric for Rotated MNIST and ADNI is accuracy, while for the Battery
dataset is MSE. The methods compared are DOT (Direct Optimal Transport) and
COT (Continuous Optimal Transport). Two sorting approaches are utilized: metadata-
based sorting and Wasserstein based transfer curriculum. For ease of comparison, the
y-coordinate of the first two datasets represents 1−ACC, where lower values indicate
superior performance. Each configuration is evaluated 100 times, and the shaded areas
represent the variance.
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3.3 Adaptation Comparison Results

A comprehensive comparison of our proposed method, W-MPOT, is conducted
with several classic approaches in the realm of CDA. We present the comparison
results in Table 1.

In our experimental setup, we maintain a fixed number of two intermediate
domains, and each experiment is repeated 100 times to ensure robustness, with
the average results reported. In the bottom section of Table 1, we showcase
the outcomes of our proposed algorithm, W-MPOT, applied in three distinct
scenarios: p2→p1, p1→p2, and p1 + p2. These scenarios involve using one path
to refine the other and utilizing both paths for a new refined path. Bilateral
experiments are conducted by applying a mutual constraint mechanism using
regularizers from both paths.

The results indicate the superior performance of W-MPOT over other meth-
ods across all three datasets, underscoring its efficacy in mitigating continuous
domain shifts. Notably, W-MPOT using both path 1 and path2 shows the opti-
mal performance, providing strong evidence for the effectiveness of the added reg-
ularization term Rp(·). The results of W-MPOT in other two scenarios: p2→p1
and p1→p2, showing similar performance, suggest that the regularization ap-
proach is robust and does not heavily rely on the specific choice of the second
path. By leveraging both paths with mutual constraints, W-MPOT successfully
improves the overall robustness of the model.

Table 1. MSE or Accuracy for three datasets of different algorithms

Method ADNI (↑) Battery (↓) ROT MNIST (↑)

Source Model 41.2 0.3731 48.1
CMA [6] 55.4 0.3842 65.3
EAML [9] 68.3 0.2045 70.4
AGST [19] 57.3 0.3534 76.2

Gradual ST [7] 64.5 0.1068 87.9
CDOT [10] 82.6 0.0209 75.6

W-MPOT(p2→p1) 86.7 0.0199 88.3
W-MPOT(p1→p2) 86.5 0.0197 87.2
W-MPOT(p1 + p2) 88.3 0.0185 89.1

3.4 Ablation Study

We conducted ablation studies on the Battery Charging-discharging Capacity
dataset to investigate the effect of domain partitioning, Wasserstein-based sort-
ing strategy, and path consistency regularization separately. Delimited domains
consistently exhibit lower mean and variance of MSE compared to random batch
sampling in Fig. 4(a), indicating increased stability. This highlights the neces-
sity of considering distinct domains for improved predictive accuracy. Comparing
Unordered COT to Ordered COT reveals consistently lower MSE values in Fig.
4(b), emphasizing the value of the Wasserstein-based transfer curriculum for su-
perior performance in battery capacity prediction tasks. The vital role of the
path consistency regularization term in achieving accurate and robust domain

yang
Highlight
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mappings is demonstrated by the comparison of MPOT (with Rp(·)) and COT
(without Rp(·)) in Fig. 4(c).

(a) Domain Par��oning (b) Sor�ng Strategy (c) Path Consistency

Fig. 4. Ablation study Results. The experiments from a to b involved domain
partitioning, sorting strategy, and path consistency. For each number of intermediate
domains in a and b, the experiment was randomly repeated 100 times. The solid line
represents the mean MSE, while the shaded area represents the variance. The experi-
ment in c is conducted by fixing the number of intermediate domains to 2 and randomly
sampling different intermediate domains 100 times.

4 Conclusion

This research introduces the W-MPOT framework for CDA, effectively address-
ing substantial domain shifts and missing metadata. It comprises theWasserstein-
based Transfer Curriculum for domain ordering and MPOT for cumulative errors
during adaptation. Experimental results across diverse datasets demonstrate its
superior performance, highlighting the practicality and potential of these meth-
ods in handling substantial domain shift challenges. This work advances the
field of CDA and offers insights into addressing domain shift effectively, espe-
cially in domains like healthcare and energy storage. Future research could focus
on establishing generalization bounds and employing reinforcement learning to
optimize the selection of intermediate domains, making domain adaptation a
sequential decision-making process.
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backward splitting for optimal transport based problems. In: ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). pp. 5405–5409. IEEE (2020)

11. Petersen, R.C., Aisen, P.S., Beckett, L.A., Donohue, M.C., Gamst, A.C., Harvey,
D.J., Jack, C.R., Jagust, W.J., Shaw, L.M., Toga, A.W., et al.: Alzheimer’s disease
neuroimaging initiative (adni): clinical characterization. Neurology 74(3), 201–209
(2010)

12. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation
learning for domain adaptation. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence. vol. 32 (2018)

13. Sun, B., Feng, J., Saenko, K.: Correlation alignment for unsupervised domain adap-
tation. Domain adaptation in computer vision applications pp. 153–171 (2017)

14. Van Nguyen, Q.: Forward-backward splitting with bregman distances. Vietnam
Journal of Mathematics 45(3), 519–539 (2017)

15. Villani, C., Villani, C.: The wasserstein distances. Optimal Transport: Old and
New pp. 93–111 (2009)

16. Wang, Y., Yin, P., Tao, Z., Venkatesan, H., Lai, J., Fang, Y., Xiao, P.: An empirical
study of selection bias in pinterest ads retrieval. In: Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. pp. 5174–5183
(2023)

17. Xu, Y., Jiang, Z., Men, A., Liu, Y., Chen, Q.: Delving into the continuous do-
main adaptation. In: Proceedings of the 30th ACM International Conference on
Multimedia. pp. 6039–6049 (2022)

18. Zhao, H., Des Combes, R.T., Zhang, K., Gordon, G.: On learning invariant repre-
sentations for domain adaptation. In: International conference on machine learning.
pp. 7523–7532. PMLR (2019)

19. Zhou, S., Wang, L., Zhang, S., Wang, Z., Zhu, W.: Active gradual domain adap-
tation: Dataset and approach. IEEE Transactions on Multimedia 24, 1210–1220
(2022)



A. OPTIMAL TRANSPORT 13

20. Zhou, Z., Ran, A., Chen, S., Zhang, X., Wei, G., Li, B., Kang, F., Zhou, X., Sun, H.:
A fast screening framework for second-life batteries based on an improved bisecting
k-means algorithm combined with fast pulse test. Journal of Energy Storage 31,
101739 (2020)

A Optimal Transport

This section provides the details for the Optimal transport (OT) used in the
main text. OT provides a measurement of the divergence between two prob-
ability distributions by finding an optimal transportation plan that minimizes
the total cost of mapping one distribution to the other. When used to measure
the divergence between the source and target domain, this transportation plan
specifies how mass from each point in the source distribution is moved to cor-
responding points in the target distribution [2]. The cost of moving mass from
one point to another is typically defined by a ground metric.

Formally, given two probability distributions µs and µt with NS and NT

points, respectively, OT looks for a transport plan γ0 that minimizes the total
cost:

γ0 = argmin
γ∈P

⟨γ,M⟩F + λ ·Ω(γ),

P =
{
γ ∈

(
R+

)NS×NT | γ1NT
= µS , γ

T1NS
= µT

} (7)

whereM is a transportation matrix andΩ denotes the entropic regularization
term Ω(γ) =

∑
i,j γi,j log (γi,j). λ > 0 is the weight of entropic regularization.

The optimal transport problem can be solved using various algorithms, such
as the Sinkhorn algorithm [3], the linear programming-based method, or the
entropic regularization approach, etc.

B Lemma of Generalization Bound

We proposed the generalization bound for CDA in the main text, referencing
the following lemma introduced in [12].

Lemma 1. Suppose the two domains have the same true labeling function f :
X → [0, 1]. Let µS, µT ∈ P(X ) be two probability measures on Rd. Assume
that all hypotheses in the hypothesis set H satisfies the A-Lipschitz continu-
ous condition for some A. Denote the error function of any hypothesis h com-
pared with the true labeling function with respect to distribution µ as ϵµ(h, f) =
Ex∼µ [|h(x)− f(x)|]. Then for any hypothesis h ∈ H, the following holds:

ϵµT
(h, f) ≤ ϵµS

(h, f) + 2A · W1 (µS , µT ) + ϵ,

where ϵ is the combined error of the ideal hypothesis h∗ that minimizes the com-
bined error ϵµS

(h, f) + ϵµT
(h, f).
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Let µI0 , µI0 ∈ P(X ) be the probability measures on for domain (DI0 ,
DI1), respectively. By simply applying this lemma to each source-target pairs
(DS , DI0), (DI0 , DI1) and (DI0 , DT ), the generalization bound of the transfer
path DS → DI0 → DI1 → DT could be derived.

C Detailed Solution for the Sinkhorn algorithm

The Sinkhorn algorithm is an efficient iterative method to solve the optimal
transport problem by iteratively updating a matrix of non-negative values to
approach the optimal coupling [3]. As in [10], the MPOT problem fits into the
forward-backward splitting algorithm [1, 14], whose solution could be efficiently
computed with the Sinkhorn algorithm. Therefore, Eq. (5) in the main text can
be solved through the following iterative steps

M[N,N+1]
c = αM[N,N+1] + α∇J (γc, γp2

),

γc+1 = Sinkhorn
(
M[N,N+1]

c , 1 + αλ, µSIN , µT

)
,

(8)

where c ∈ [0,∞) is the index of iteration, and it will be repeated until γ con-
verges. α is the step size and ∇ is the differential computation symbol. J (·) is
a combination of regularization terms as follows

J (γ, γp2
) = ηtRt(γ) + ηpRp(γ, γp2

)− λΩ(γ), (9)

The derivation result of J (·) is

∇J (γ, γp2) = ηt
∂Rt(γ)

∂γ
+ ηp

∂Rp(γ, γp2)

∂γ
− λ

∂Ω(γ)

∂γ
, (10)

Since Rp(·) can be expressed in the form of trace with respect to γ, we then

use xn to represent D̂In and take the derivative of Rp(·) as

∂Rp(γ, γp2
)

∂γ
=

∂ tr
[
N2

S · xT
n · γT · γ · xn

]
∂ (γT · γ)

∂
(
γT · γ

)
∂γ

−
∂ tr

[
N2

S · xT
n · γT · γp2

· xn

]
∂γ

−
∂ tr

[
N2

S · xT
n · γT

p2
· γ · xn

]
∂γ

= 2N2
S (γ − γp2

)xnx
T
n .

(11)

Similar to the derivative of Rp(·), the derivative of Rt(·) and Ω(·) can be
derived as follows,

∂Rt(γ)

∂γ
= 2N2

S(γ · xn − γn−1 · xn−1)x
T
n , (12)
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∂Ω(γ)

∂γ
= log(γ). (13)

By integrating Eq. (11), Eq. (12) and Eq. (13) together into Eq. (10), we can
obtain the ∇J (·). Then we repeat the iteration of γ as outlined in Eq. 8.

D Implementation Details

In this section, we provide details on the implementations. We implemented
optimal transport in both Wasserstein based transfer curriculum and MPOT
using the POT package 1. All models were implemented by PyTorch and all the
experiments were performed on a machine equipped with one Intel(R) Xeon(R)
E5-2620 CPU and one NVIDIA TITAN V GPU.

1 https://pythonot.github.io/index.html




