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Example: A robotic tour guide

Machine Learning in the Wild
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Camera 

Microphone 
Array

Lidar

Sonar

emotion recognition

orientation 
estimation 

depth estimation

identification

…

Need to solve many learning tasks

Multiple data sources  

Limited training data

…

Need to exploit shared 
representations in the complex 

data and tasks
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… among different tasks  … among different views (input 
sources, feature sets) 

combine multi-view representations (multiview learning) 

Multiview learning: learn from multi-
view representations   

identification

Task transfer learning: reuse the 
representation of task A for task B 

object 
detection

depth 
estimation

chair
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Exploiting Shared Representation  

 4

Task transfer learning Multi-view learning 

Task BTask A

combine multi-view representations (multiview learning) 

identification

chair

Estimate to what extent 
representation of task A can help 

task B?

How to effectively extract shared 
information?



Representation Learning based on Correlation 

corr(X,Y) measures the statistical dependence between X and Y   

e.g. Pearson’s correlation coefficient 

Example: Canonical Correlation Analysis (CCA) 

Finds a pair of vectors (a, b) that maximizes correlation between 
attributes  

subsequent features are mutually orthogonal 

limited to linear dependence
 5

a*, b* = argmaxa,bcorr (aTX, bTY)

corrP(X, Y ) =
𝔼[(X − X̄)T(Y − Ȳ )]

σXσY



Maximal HGR Correlation

Given random variables X, Y, the Maximal Hirschfeld-Gebelein-
Renyi (HGR) correlation [Renyi 1959] is: 

f(X) g(Y)

X Y

E[f(X)g(Y )]
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non-linear 
functions
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E[f(X)2] = E[g(Y )2] = 1



Maximal HGR Correlation

Given random variables X, Y, the Maximal Hirschfeld-Gebelein-
Renyi (HGR) correlation [Renyi 1959] is: 

f(X) g(Y)

X Y

E[f(X)g(Y )]

Maximize

non-linear 
functions

sup
f,g

E[f(X)g(Y )]

s.t. E[f(X)] = E[g(Y )] = 0

E[f(X)2] = E[g(Y )2] = 1

Alternating Conditional 
Expectation (ACE) algorithm 
[Breiman 1985]
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Recent Information-Theoretic Development 

High dimensional cases:   

 

Effective and robust information 
decompostion 

max
f,g

E[f(X)T g(Y )]

s.t. E[f(X)] = E[g(Y )] = 0

Cov[f(X)] = Cov(g(Y )) = I

f : 𝒳 → ℝk g : 𝒴 → ℝk

= tr(cov( fS(X))−1cov(𝔼X|YT
[ fS(X) |Y]))

model f f

gmodel g

X

Y

L = �2E[f(X)T g(Y )]+

tr(cov(f(X))cov(g(Y )))

Soft-HGR Loss [Wang et al. 2018]: 

Eliminate the whitenining 
constraint

[Huang et al. 2017]
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“ Discriminability-Based Transfer 
between Neural Networks” 
(Pratt 1993): 

Input: training data for task S and T, 
and a pre-trained source model  

Goal: train task T 

f 

Task S

trained 
model

Input

…

Task T

Improve target training efficiency, reduce number of target 
labeled data needed

features

coach

table
TV

…

Assumes represenation of S is 
transferable to T

kitchen 
bedroom 
livingroom 



Why Task Transferability is Important?

Model selection 

 10

Transform
er

InferSent

GLOVE

Word2Vec

e.g. Select the best word/sentence 
encoder for NLP tasks 



Why Task Transferability is Important?

Model selection 
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Transform
er

InferSent

GLOVE

Word2Vec

e.g. Select the best word/sentence 
encoder for NLP tasks 

Task transfer policy learning

e.g. Find optimal transfer policy 
given a collection of tasks
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The Task Transferability Problem
Given: 

• Input X, source task label YS, target task label YT 
• Trained source model with optimal feature fS(X)
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fS(X) 

input X

Source task 
label YS

Target task label 
YT

YS

YT

X

transfer

The Transfer Network Transferability of S→T  :  to 
what extent can fS help 

learning target task (X,YT)?

coach

table
TV

…

Task S

Task T



Related Works — Theoretical Results

Why does transfer learning work?  

Inductive bias learning (Baxter 2000): Learning with multiple related tasks  generalize 
better to novel tasks 

Transfer bounds for linear feature learning (Maurer 2009)  

 13

Does not have a clear operational meaning



Related Works — Theoretical Results

Why does transfer learning work?  

Inductive bias learning (Baxter 2000): Learning with multiple related tasks  generalize 
better to novel tasks 

Transfer bounds for linear feature learning (Maurer 2009)  

 13

Does not have a clear operational meaning

Assumes hypotheses of all tasks are within an 
environment of related tasks 

Can not be computed directly from data

Hypothesis spaceLimitation 

Source

Target

transfer
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Empirical Approach: measure transfer results based on model loss / 
accuracy  

e.g. Feature transferability in Neural Network (Yosinski 2014), Taskonomy 
(Zamir et. al 2018), Shape Inductive Biases (Feinman & Lake 2018)

Can we estimate the transfer 
performance without any training 

of the target network?

Limitation:  

need to train the transfer network using gradient 
descend 

inefficient 
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 Task Transferability

Transferability from Task S to Task T 𝔗(S, T) ≜
Target Performance of fS

Optimal Target Performance

fS(X) 

input X

Source task 
label YS

Target task label 
YT

Task S

Task T

How to measure the performance of 
fS(X) on target task (X,YT)  ?

☹︎

☺︎
8
><

>:

T(S, T ) = 1

0  T(S, T )  1

T(S, T ) = 0

under a local assumption 
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Measuring Feature Performance via 
Information Geometry
Local information geometry (Huang et al. 2017)

Represent any feature f(X) as a unit vector in the distribution space of X

P(YT|X) : a map between distribution spaces of X and YT

𝒫X

fS

Length of projected 
vector characterizes 
feature peformance  

ℋ( fS) 𝒫YT

P(YT|X) 

gS

ℋ( fS)
= tr(cov( fS(X))−1cov(𝔼X|YT

[ fS(X) |YT]))



Measuring Feature Performance via 
Information Geometry

Feature with maximum projection length: 

𝒫X 𝒫Y

P(Y|X) 

fS

gS

fT

fT
𝔗(S, T) ≜

Target Performance of fS
Optimal Target Performance

=
ℋT( fS)
ℋT( fT)

Transferability S→T: normalized 
projection length

Optimal Performance
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Neural Network Perspective

Classification using log-loss:  

X, Y random variables; f(X) a zero-mean feature  

Expected log loss:  
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Measuring Feature Effectiveness - 
Neural Network Perspective

Classification using log-loss:  

X, Y random variables; f(X) a zero-mean feature  

Expected log loss:  

 18

min
f,✓

L(f ; ✓)

L(f ; ✓) = EX,Y [L(f(X), Y ; ✓)]

X
f(X) Y

preprocess softmax

H-score of f(X)

H(f) = tr(cov(f(X))�1cov(EPX|Y [f(X)|Y ]))

Higher H-score => 
Better Performance

L( f, θ⋆) = Const(X, Y) − H( f ) + o(ϵ2)

By Local information geometry [Huang 2018], given feature f(X), the optimal loss is
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Interpretation of

Intuition in latent space 
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ℋ( f )

average intra-class distance ↑ 

𝔼[∥𝔼[ f(X) |Y]∥2]
H-score ↑  feature redundancy  ↓ 

  [Huang 2018] = tr(cov( fS(X))−1cov(𝔼X|YT
[ fS(X) |Y]))

Relationship with HGR maximal correlation  

ℋ( f ) = maxgL( f, g)

model f f

gmodel g

X

Y

L = �2E[f(X)T g(Y )]+

tr(cov(f(X))cov(g(Y )))

When f is fixed, the maximum L is H-score, invariant to linear 
transformation 

Y=1 Y=2

Y=3



Computing Transferability

Computing H-score: 

Easy to compute  

O(mk2) time complexity
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def Hscore(f,Y): 
    Covf=np.cov(f) 
    alphabetY=list(set(Y)) 
    g=np.zeros_like(f) 
    for z in alphabetY: 
        g[Y==y]=np.mean(f[Y==y,:], axis=0) 
    Covg=np.cov(g) 
    score=np.trace(np.dot(np.linalg.pinv(Covf, 

 rcond=1e-15), Covg)) 
return score 

\frac{\mathcal{H}_T(f_S)  }{\mathcal{H}_T(f_T )}

𝔗(S, T) =
ℋT( fS)
ℋT( fT)
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Python Code for H-Score 
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Computing H-score: 

Easy to compute  

O(mk2) time complexity

 20

def Hscore(f,Y): 
    Covf=np.cov(f) 
    alphabetY=list(set(Y)) 
    g=np.zeros_like(f) 
    for z in alphabetY: 
        g[Y==y]=np.mean(f[Y==y,:], axis=0) 
    Covg=np.cov(g) 
    score=np.trace(np.dot(np.linalg.pinv(Covf, 

 rcond=1e-15), Covg)) 
return score 

\frac{\mathcal{H}_T(f_S)  }{\mathcal{H}_T(f_T )}

𝔗(S, T) =
ℋT( fS)
ℋT( fT)

Maximal H-score: 

Equivalent to computing the HGR maximal correlation    

Discrete X: Alternating Conditional Expectation (ACE) algorithm 
(Huang et. al. 2015); Continuous X: Neural network formulation

ℋT( fT)

ℋT( fS)

Python Code for H-Score 



Source Task Selection

Source task selection problem: Given source tasks S1, 
S2, …, Sn. Which one is most transferable to target task 
T ? 

Since T is fixed, we only need to compare                                  

 21

B̃T

𝔗(S, T ) ≜
ℋT( fSopt

)

Const(X, YT)

𝔗(S, T) ≜
Target Performance of fS

Optimal Target Performance
=

ℋT( fS)
ℋT( fT)

ℋT( fS) = tr(cov( fS(X))−1cov(𝔼PX|YT
[ fS(X) |YT]))

ℋT( fT) = max
f:|𝒳|→ℝk

tr(cov( f(X))−1cov(𝔼PX|YT
[ f(X) |YT]))

ℋT( fS1
), ℋT( fS2

), …

𝔗(S, T) ≜
Target Performance of fS

Optimal Target Performance

=
ℋT( fS)
ℋT( fT)



Results: Image Classification Feature Selection 

Source task: ImageNet 1000 classification (ResNet50 features 
from 6 layers 4a-5f) 

Target task: Cifar 100-class classification on 20,000 images
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Results: Source Task Selection for 3D Scene Understanding 
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Results: Source Task Selection for 3D Scene Understanding 

8 image-based tasks from Taskonomy dataset (Zamir et al. 2018) 

2 classification tasks:   object-class, scene-class 

6 2D/3D image-to-image tasks: average H-score over all superpixels

Source models: pre-trained task-specific models (4,000,000 training samples); 

Target model: linear feature transfer using 20,000 images (64 x 64)

 23
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Cluster the source task transferability scores for each target task.  

•

similar 
ranking

Transferability reveals task 
relationships



Comparison with Task Affinity

Reference metric: task affinity, an empirical 
transferability score (Amir et al. 2018) 

• Ranking results agrees mostly on the top 
three rankings for each task 
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Comparison with Task Affinity

Reference metric: task affinity, an empirical 
transferability score (Amir et al. 2018) 

• Ranking results agrees mostly on the top 
three rankings for each task 

 26

Advantage of our approach: 

• Efficiency: five times more efficient than Affinity 

• Clear operational meaning based on statistics & information theory  

Transferability Affinity Rank Comparison

DCG

Transferability Affinity Rank Comparison

DCG



A minimum-spanning tree approach to design transfer curriculum 

living 
room, 

kitchen 

Scene

coach, 
table, TV

Object

2D Edges

3D Edges
2D Keypoints

3D Keypoints

Reshading

Depth

input

Application: Task Curriculum based on 
Transferability



Outline
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Intro: Shared Representation & Maximal Correlation 

Estimating Task Transferability in Task Transfer Learning  

Multi-view learning  

Conclusion



Multi-View Learning

Exploits shared knowledge among different data sources or different feature 
subsets
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View #1: X

View #2: Y
Sample Instance Z
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View #1: X

View #2: Y
Sample Instance Z

Correlation-based approaches: a natural way to capture the shared 
information between views



Correlation-Based Approaches

CCA and Kernalized CCA: shallow modes  

Deep CCA (DCCA) [Andrew et. al. 2013]  

Deep CCA Auto Encoder  (DCCAE) [Wang et. al 2016]
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CCA and Kernalized CCA: shallow modes  

Deep CCA (DCCA) [Andrew et. al. 2013]  

Deep CCA Auto Encoder  (DCCAE) [Wang et. al 2016]
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Limitations: 

Numerical issues (whitening based on matrix inverse) 

Feature dimension is limited



Multi-View Learning using Maximal HGR Correlation

Unsupervised task: 
multi-view mobility pattern extraction 

Supervised task:  
mutli-modal emotion recognition
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Mobility Pattern Mining

Mobility pattern: Common Repeated Travel 
Demand among a Population
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New York Taxi Trip Records, 17:00 – 18:00, 2015 May 11th – May 15th  

Public Transport Location-Based Service

(Ola
t, O
lon)

(Dla
t, D
lon)

(Olat,Olon)

(Dlat,Dlon)
Learn from trip (origin, destination) data 



Single-View Approaches
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K-Means & DBSCAN 

Cluster Orgin-Destination (OD) 
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K-Means & DBSCAN 

Cluster Orgin-Destination (OD) 
trips (Olat, Olon, Dlat, Dlon) in 
4D space 

Projecting to 2D space causes 
spatial overlap

Overlap 
Areas

City & Traffic Planning 

Define traffic dynamic by regions 

Ambiguities for overlapped regions

(Ola
t, O
lon)

(Dla
t, D
lon)

(Olat,Olon)

(Dlat,Dlon)
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Overlap 
Areas

Traditional Approach

Multi-view learning of mobility features
[Lian et. al. 2019]
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Overlap 
Areas

Traditional Approach Our Approach

Multi-view learning of mobility features

Learn features for Origin view and Destination view

No overlap among 
origin/destination 

regions  

[Lian et. al. 2019]



clustering & compute 
mobility pattern

System Architecture: KACE 
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origin view

destination view
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origin view

destination view

Maximal HGR correlation
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origin view

destination view

Maximal HGR correlation

Spatial Constraints

Spatial Constraints



Experiment Data
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Weekdays’ data in Nov. 2015 

Beijing: Extract OD pairs from taxi trajectories 

NYC: Open data published by NYC TLC



NYC Results
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 Recovers the block city topology of Manhattan



NYC Results
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 Recovers the block city topology of Manhattan

Dim=1

Dim=2

different values 
of f(X)
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Beijing Results
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•  Recovers the ring-like city topology of Beijing



/ 74

Beijing Results
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•  Recovers the ring-like city topology of Beijing

Dim=1

Dim=2

Dim=3

different values 
of f(X)
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Comparison with Other Methods
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Comparison with Other Methods

 39

• Traditional methods by clustering trips, has big overlap.

• Multi-view clustering MLAN , CCA-based methods results in less compact 
clusters 

• Our method, KACE has the best overall performance
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Comparison with Canonical Correlation
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Evaluate extracted features:

“tailedness" of a 
distribution 
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Comparison with Canonical Correlation

 40

Evaluate extracted features:

KACE features have much smaller 
Kurtosis than CCA/KCCA

“tailedness" of a 
distribution 



Application II: Multi-Modal Emotion Recognition 

Goal: classify emotion from audio 
and visual data 

important for machine-based 
understanding

 41

example of movie annotation

[Ma et. al. 2019]



Application II: Multi-Modal Emotion Recognition 

Goal: classify emotion from audio 
and visual data 

important for machine-based 
understanding
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example of movie annotation

Challenge: disentangling private and public information

[Ma et. al. 2019]



System Architecture
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System Architecture
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Public information: maximize correlation between modalities



System Architecture
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Public information: maximize correlation between modalities
Private information: preserving structure of each modality



System Architecture
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Public information: maximize correlation between modalities
Private information: preserving structure of each modality
Utility: classification using fused features



Evaluation
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tested on two video-audio emotion databases: eNTERFACE’05 and RML



Evaluation

comparison with CCA-based methods  



Evaluation

comparison with CCA-based methods  comparison with existing benchmark 
results
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Summary
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Estimate task transferability Multi-view learning 

Task BTask A

combine multi-view representations (multiview learning) 

identification

chair

equivalent to HGR maximal 
correlation with fixed f(X)

learn maximal correlation 
representations

ℋ( fA)



Conclusion



Conclusion

Exploiting shared representation between tasks and 
between multi-view data is important for complex AI 
applications



Conclusion

Exploiting shared representation between tasks and 
between multi-view data is important for complex AI 
applications

HGR Maximal correlation is a useful tool to measure and 
extract shared information
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