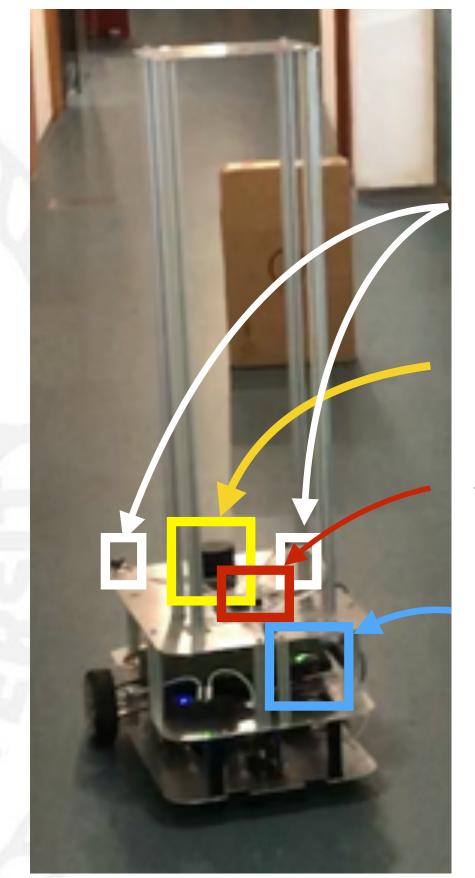
Using Maximum Correlation for Transferability Estimation and Multi-Modal Learning

Yang Li Center of Data Science and Information Technology Tsinghua-Berkeley Shenzhen Institute

June 19, 2019, Texas A&M University

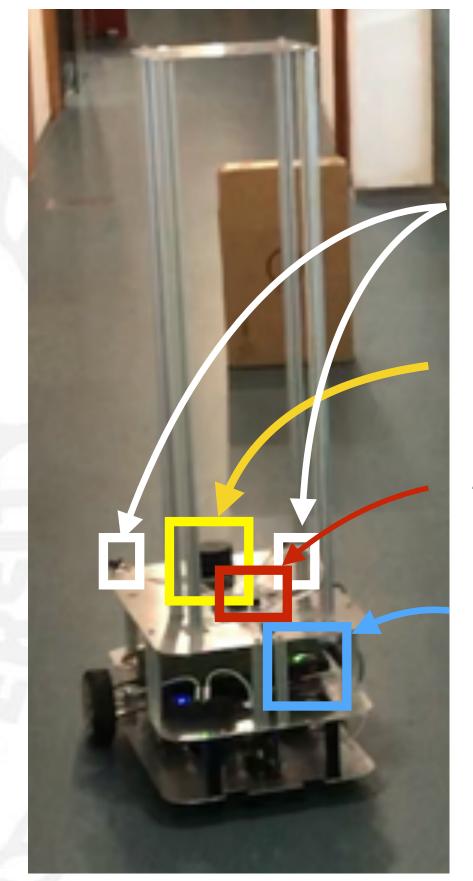


Sonar

Lidar

Microphone Array

Camera

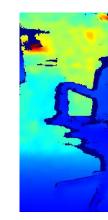


Sonar

Lidar

Microphone Array

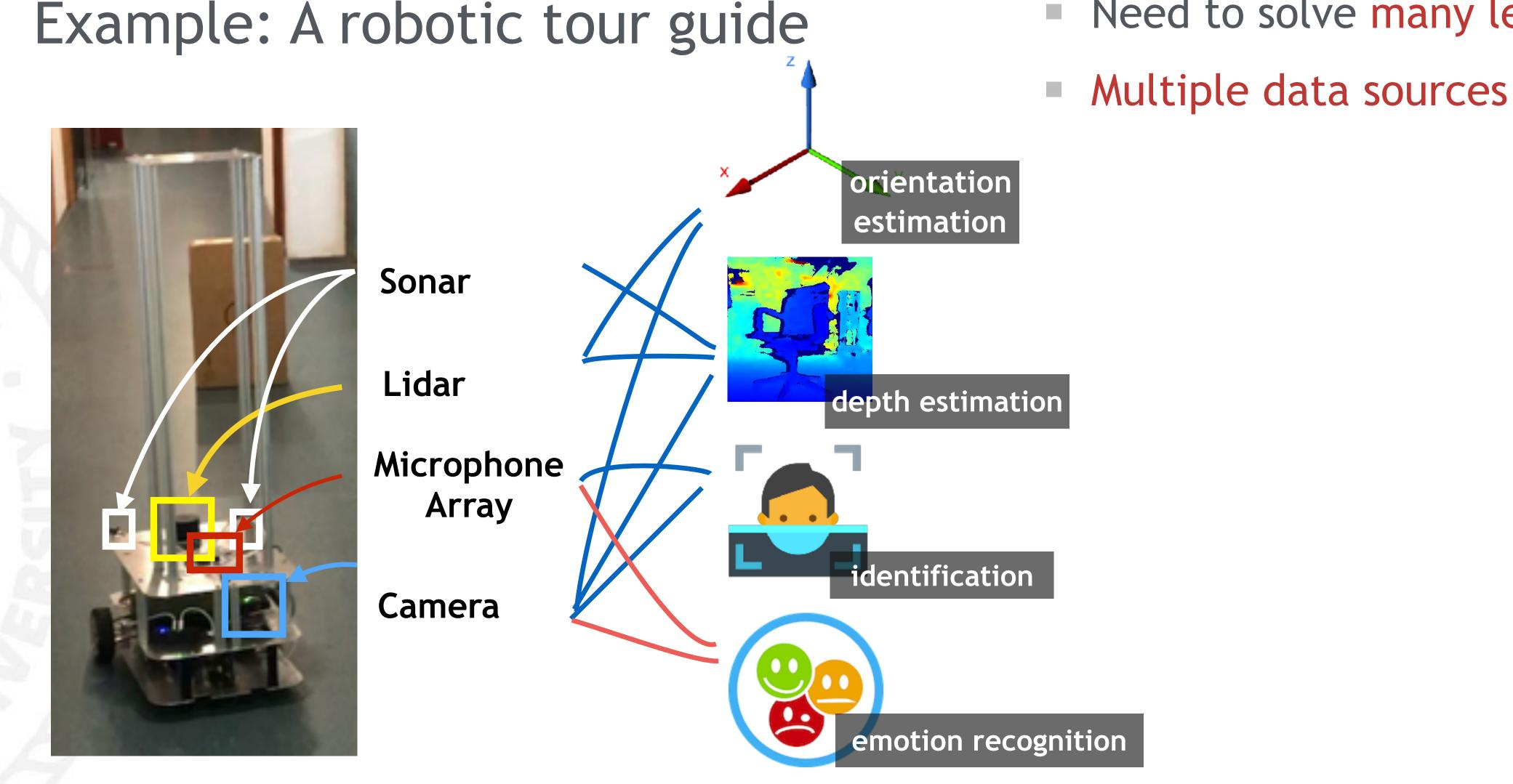
Camera

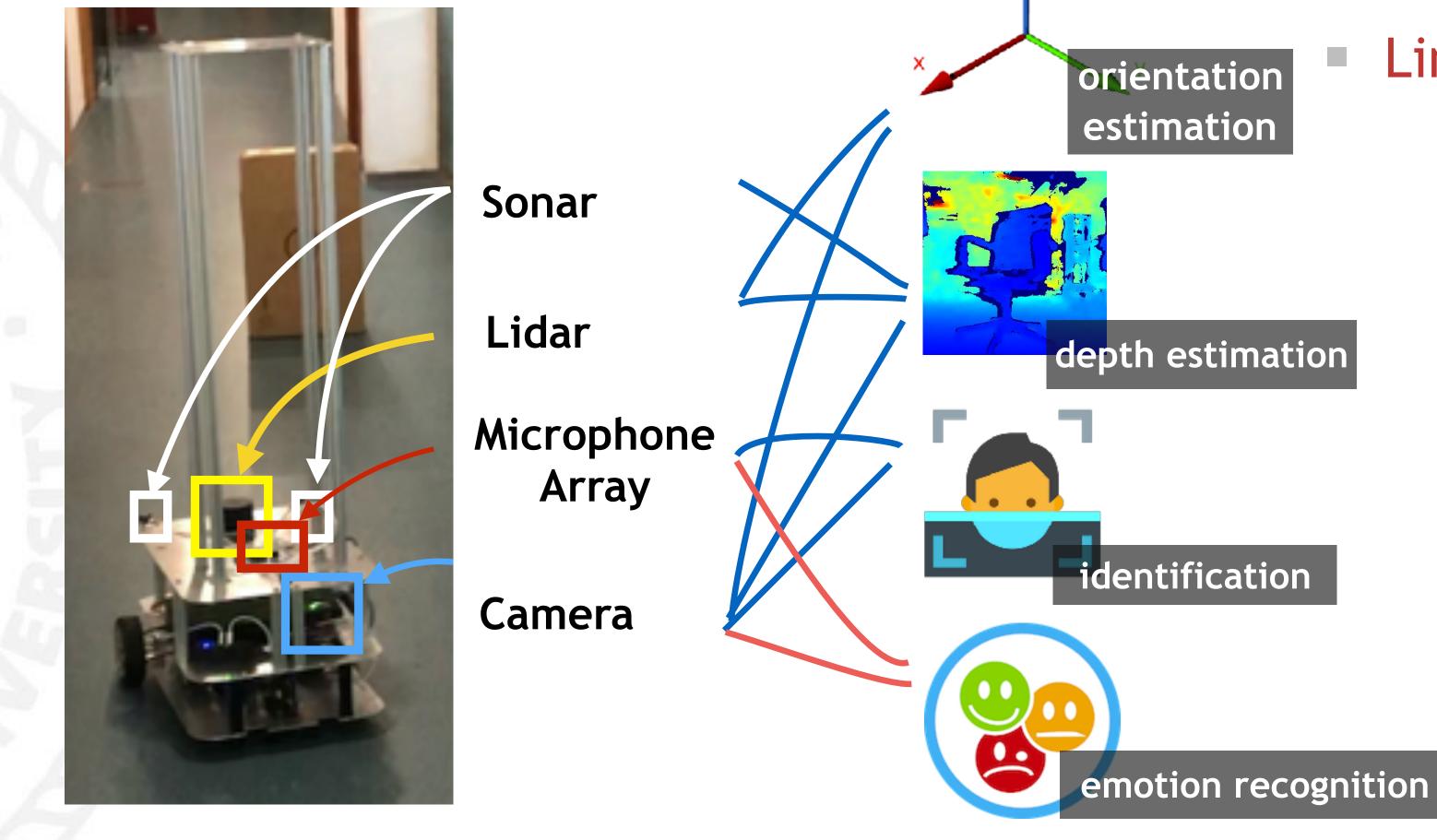




Need to solve many learning tasks

depth estimation

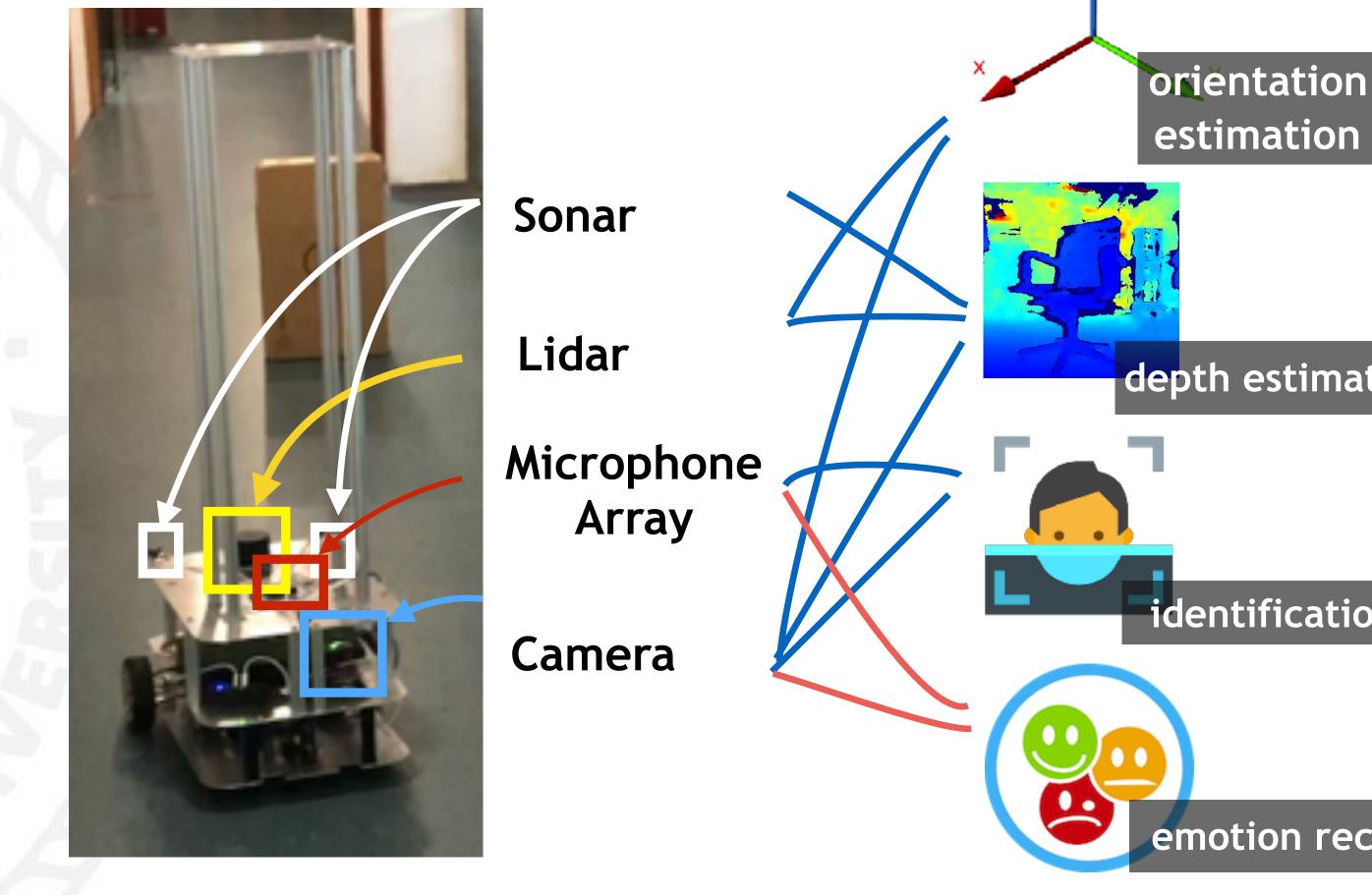




Need to solve many learning tasks Multiple data sources Limited training data



Need to solve many learning tasks Multiple data sources Limited training data



Need to solve many learning tasks Multiple data sources Limited training data

depth estimation

identification

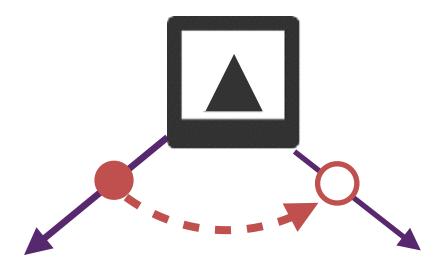
Need to exploit shared representations in the complex data and tasks

emotion recognition

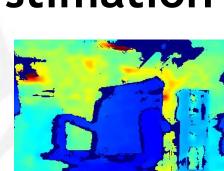
... among different tasks

... among different views (input sources, feature sets)

... among different tasks



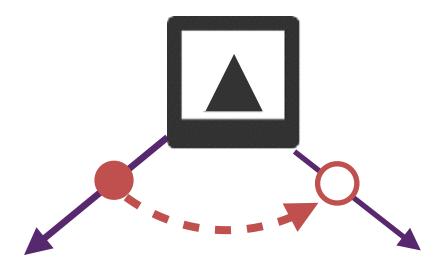
depth estimation



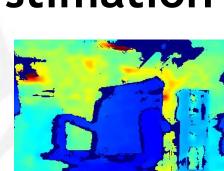
Task transfer learning: reuse the representation of task A for task B

among different views (input sources, feature sets)

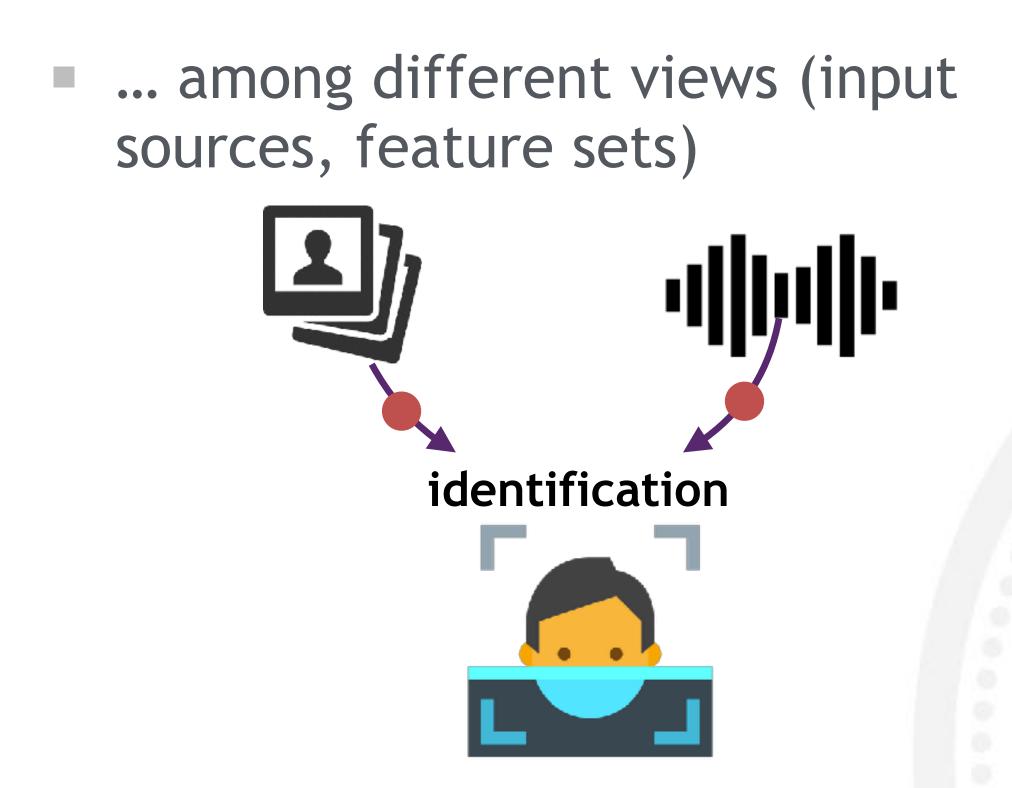
... among different tasks



depth estimation

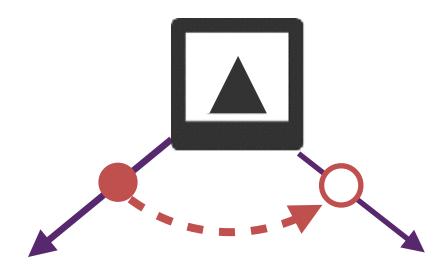


Task transfer learning: reuse the representation of task A for task B



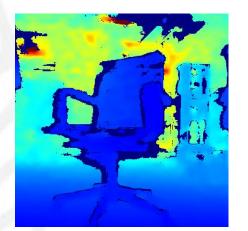
Multiview learning: learn from multiview representations

Task transfer learning

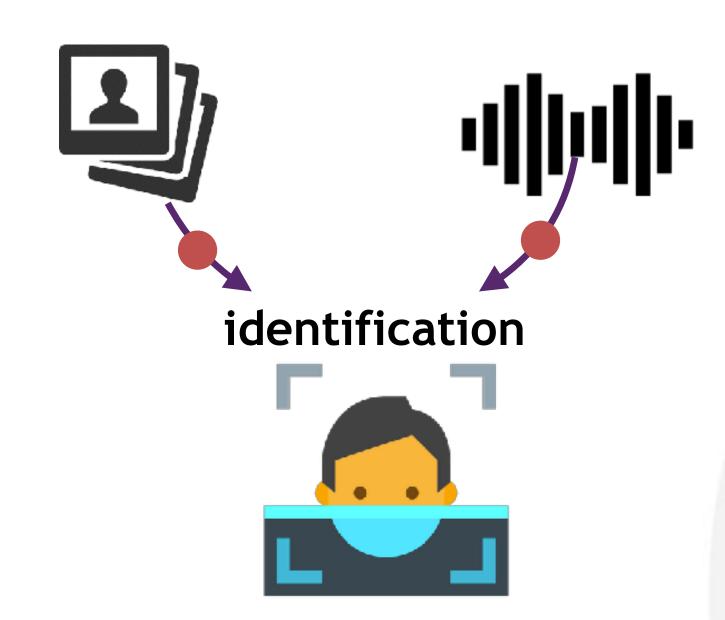


Task A

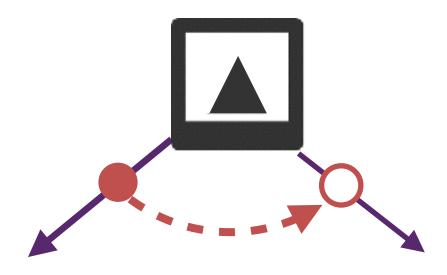
Task B



Multi-view learning

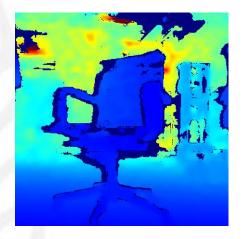


Task transfer learning



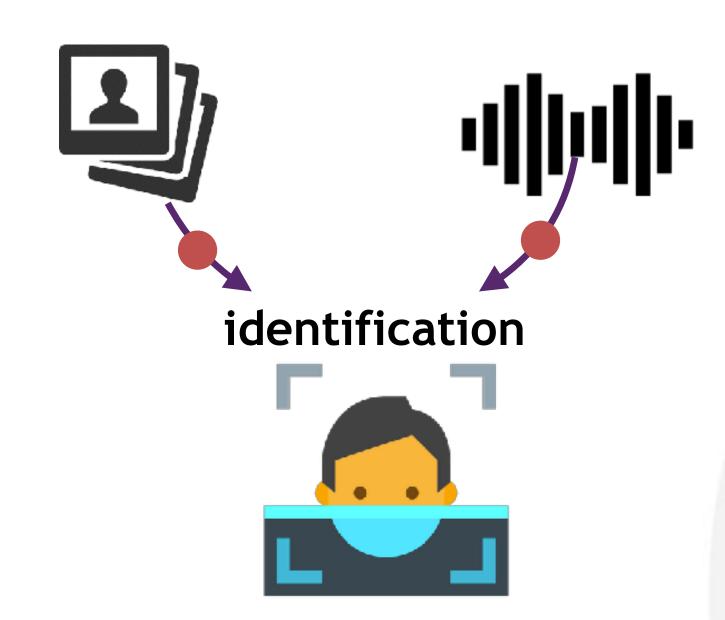
Task A

Task B

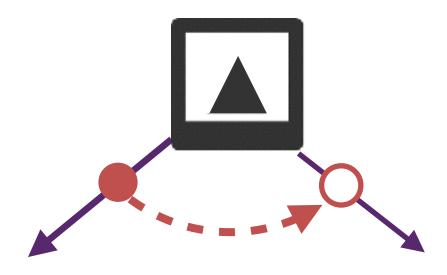


Estimate to what extent representation of task A can help task B?

Multi-view learning

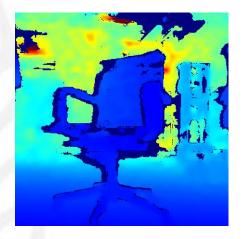


Task transfer learning



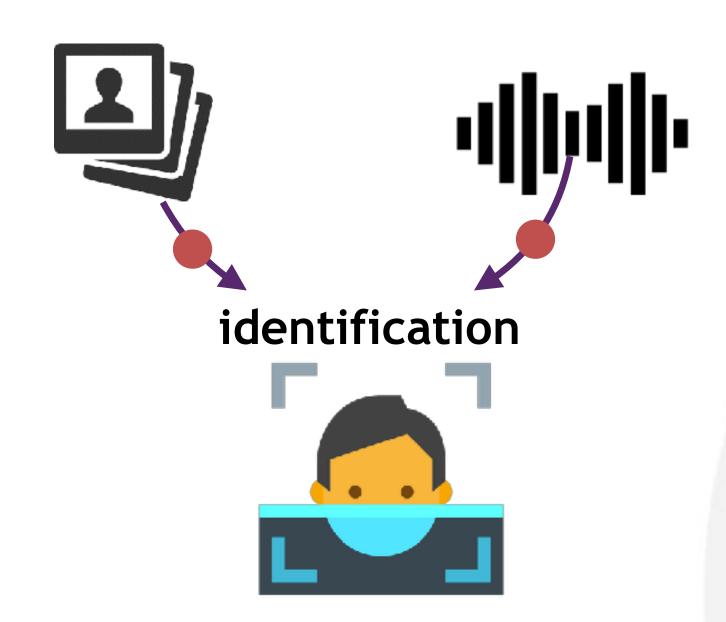
Task A

Task B



Estimate to what extent representation of task A can help task B?

Multi-view learning



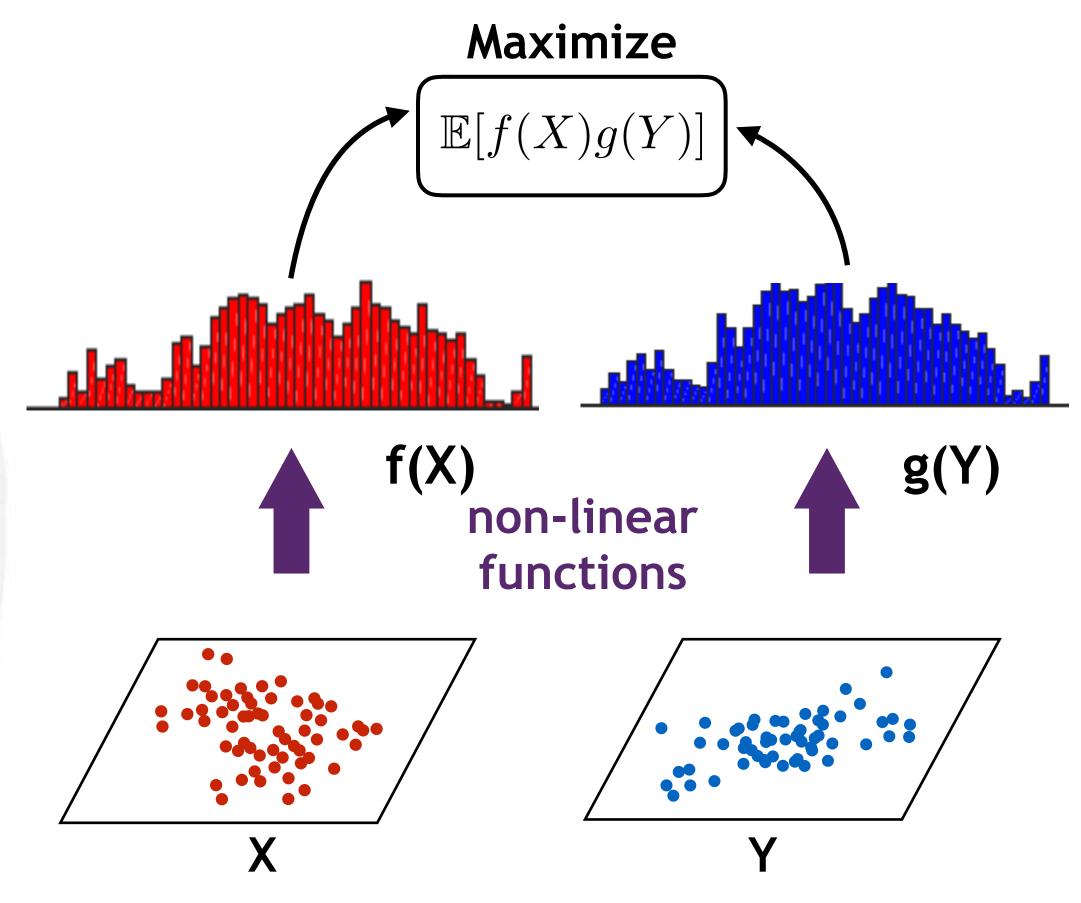
How to effectively extract shared information?

Representation Learning based on Correlation

- corr(X,Y) measures the statistical dependence between X and Y • e.g. Pearson's correlation coefficient $corr_P(X, Y) = \frac{\mathbb{E}[(X - \bar{X})^T(Y - \bar{Y})]}{(X - \bar{X})^T(Y - \bar{Y})}$ $\sigma_V \sigma_V$
- - **Example:** Canonical Correlation Analysis (CCA) $a^*, b^* = \operatorname{argmax}_{a,b} corr(a^T X, b^T Y)$
 - Finds a pair of vectors (a, b) that maximizes correlation between attributes
 - subsequent features are mutually orthogonal
 - limited to linear dependence

Maximal HGR Correlation

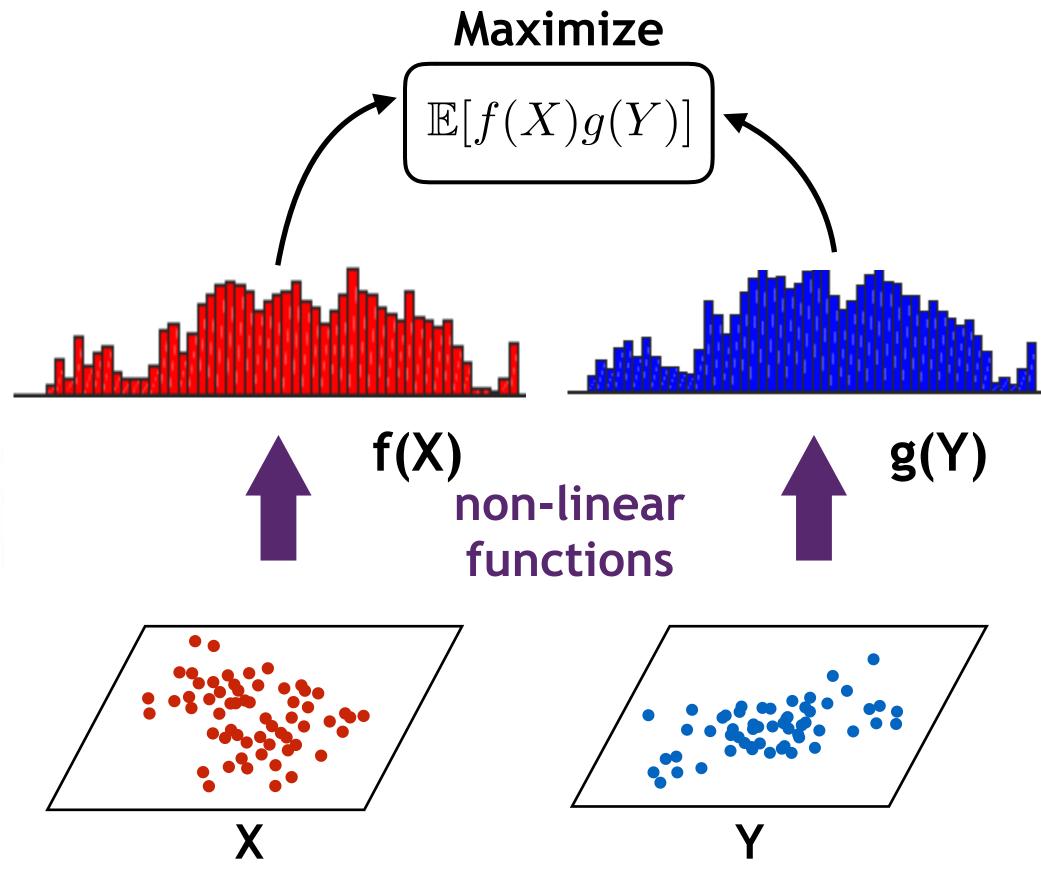
Given random variables X, Y, the Maximal Hirschfeld-Gebelein-Renyi (HGR) correlation [Renyi 1959] is:



 $\sup_{f,g} \mathbb{E}[f(X)g(Y)]$ s.t. $\mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0$ $\mathbb{E}[f(X)^2] = \mathbb{E}[g(Y)^2] = 1$

Maximal HGR Correlation

Given random variables X, Y, the Maximal Hirschfeld-Gebelein-Renyi (HGR) correlation [Renyi 1959] is:



 $\sup \mathbb{E}[f(X)g(Y)]$ f,gs.t. $\mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0$ $\mathbb{E}[f(X)^2] = \mathbb{E}[g(Y)^2] = 1$

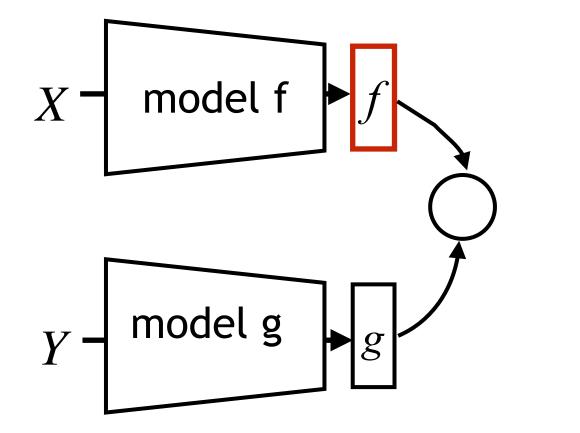
Alternating Conditional Expectation (ACE) algorithm [Breiman 1985]

High dimensional cases: $f: \mathscr{X} \to \mathbb{R}^k$ $g: \mathscr{Y} \to \mathbb{R}^k$ [Huang et al. 2017] $\max_{f,g} \mathbb{E}[f(X)^T g(Y)]$ s.t. $\mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0$ $\operatorname{Cov}[f(X)] = \operatorname{Cov}(g(Y)) = I$

[Huang et al. 2017] High dimensional cases: $f: \mathcal{X} \to \mathbb{R}^k \quad g: \mathcal{Y} \to \mathbb{R}^k$ $\max_{f,g} \mathbb{E}[f(X)^T g(Y)]$ Effective and robust information decomposition s.t. $\mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0$ $\operatorname{Cov}[f(X)] = \operatorname{Cov}(g(Y)) = I$

High dimensional cases: $f: \mathcal{X} \to \mathbb{R}^k \quad g: \mathcal{Y} \to \mathbb{R}^k$ $\max_{f,g} \mathbb{E}[f(X)^T g(Y)]$ s.t. $\mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0$ $\operatorname{Cov}[f(X)] = \operatorname{Cov}(g(Y)) = I$

Soft-HGR Loss [Wang et al. 2018]:



[Huang et al. 2017]

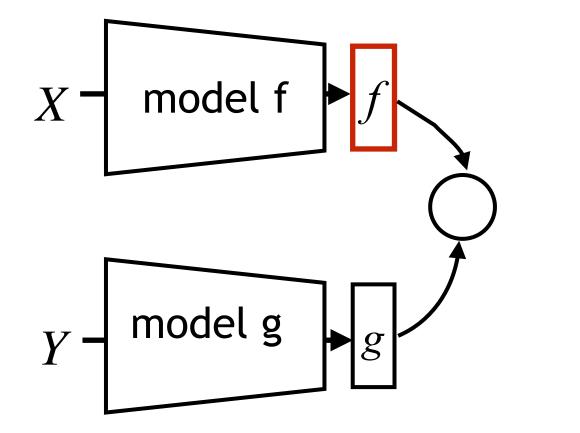
Effective and robust information decomposition

 $L = -2\mathbb{E}[f(X)^T g(Y)] +$ $\operatorname{tr}(\operatorname{cov}(f(X))\operatorname{cov}(g(Y)))$

L =

High dimensional cases: $f: \mathcal{X} \to \mathbb{R}^k \quad g: \mathcal{Y} \to \mathbb{R}^k$ $\max_{f,g} \mathbb{E}[f(X)^T g(Y)]$ s.t. $\mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0$ $\operatorname{Cov}[f(X)] = \operatorname{Cov}(g(Y)) = I$

Soft-HGR Loss [Wang et al. 2018]:



[Huang et al. 2017]

Effective and robust information decomposition

$$-2\mathbb{E}[f(X)^T g(Y)] + \operatorname{tr}(\operatorname{cov}(f(X))\operatorname{cov}(g(Y)))$$

Eliminate the whitenining constraint

Outline

Intro: Shared Representation & Maximal Correlation

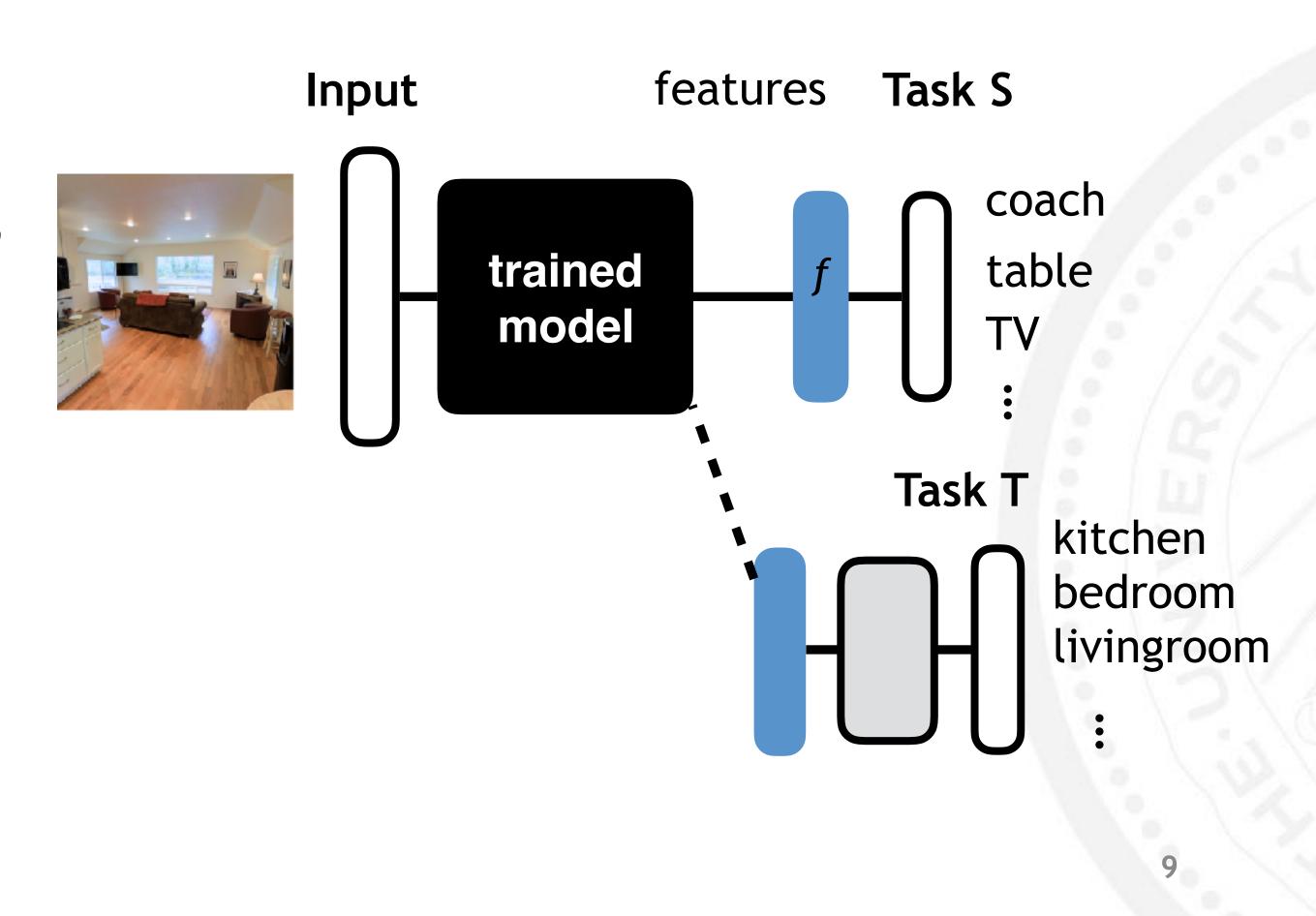
Estimating Task Transferability in Task Transfer Learning

Multi-view learning Conclusion

" Discriminability-Based Transfer between Neural Networks" (Pratt 1993):

Input: training data for task S and T, and a pre-trained source model

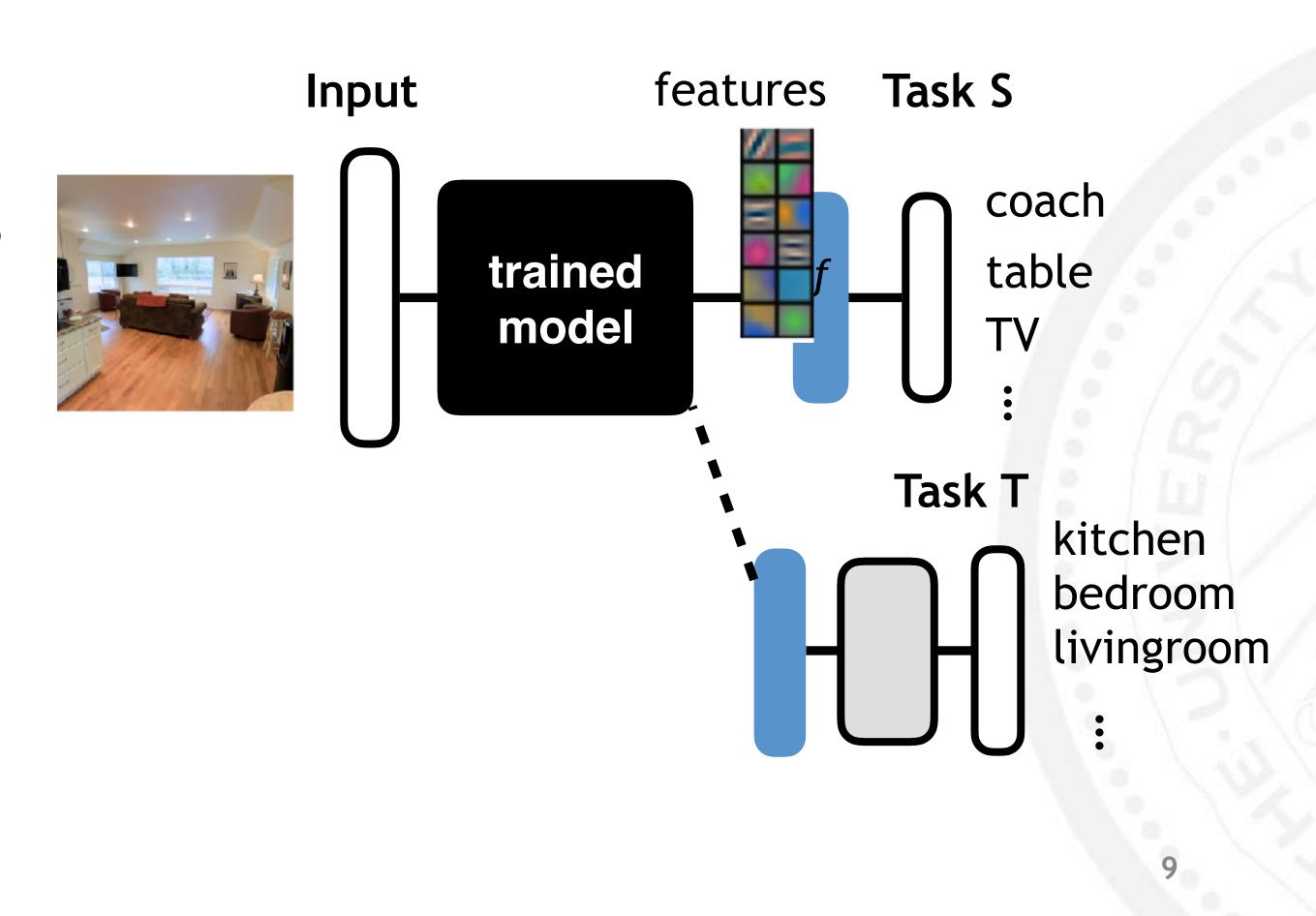
Goal: train task T



" Discriminability-Based Transfer between Neural Networks" (Pratt 1993):

Input: training data for task S and T, and a pre-trained source model

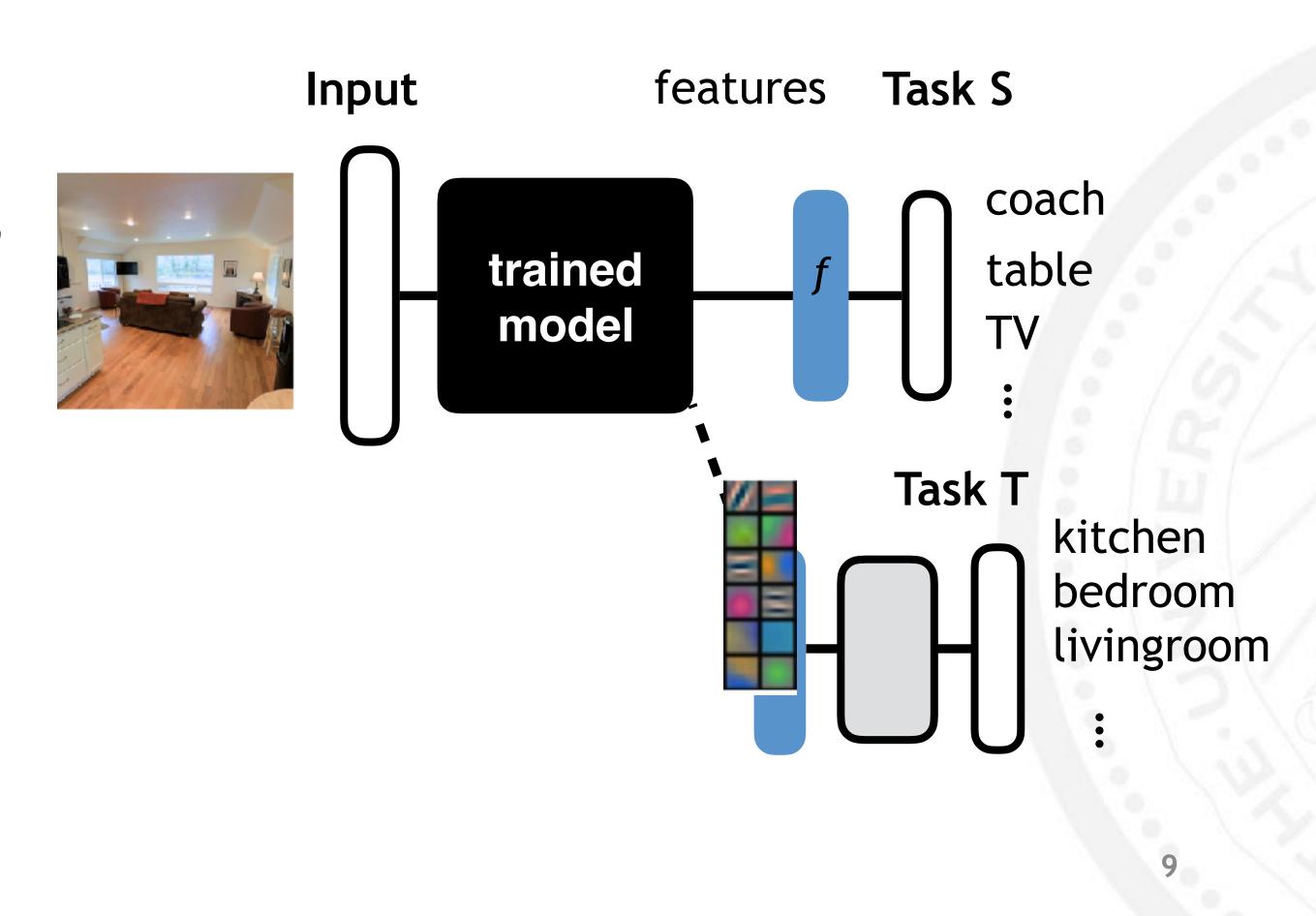
Goal: train task T



" Discriminability-Based Transfer between Neural Networks" (Pratt 1993):

Input: training data for task S and T, and a pre-trained source model

Goal: train task T

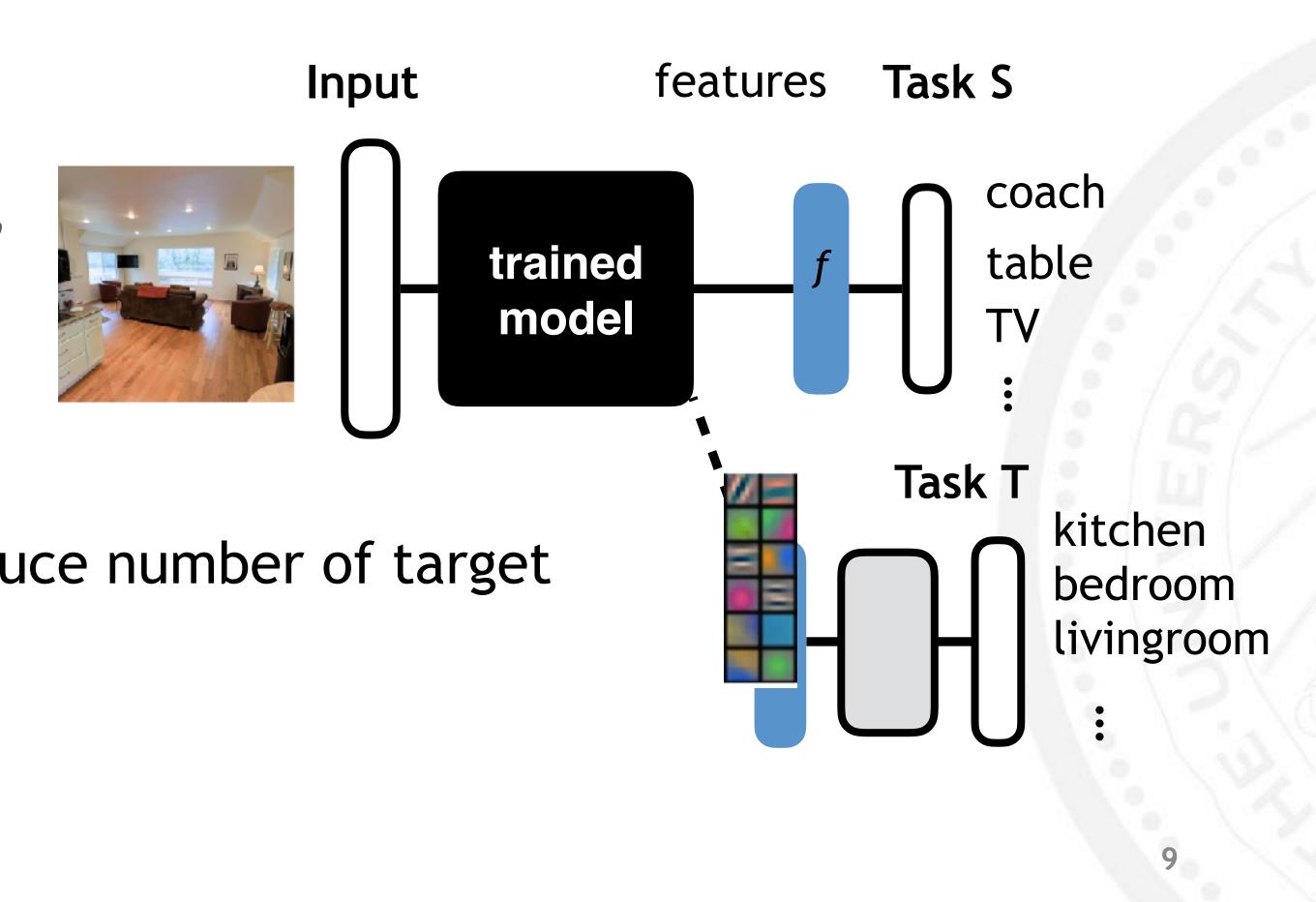


" Discriminability-Based Transfer between Neural Networks" (Pratt 1993):

Input: training data for task S and T, and a pre-trained source model

Goal: train task T

Improve target training efficiency, reduce number of target labeled data needed



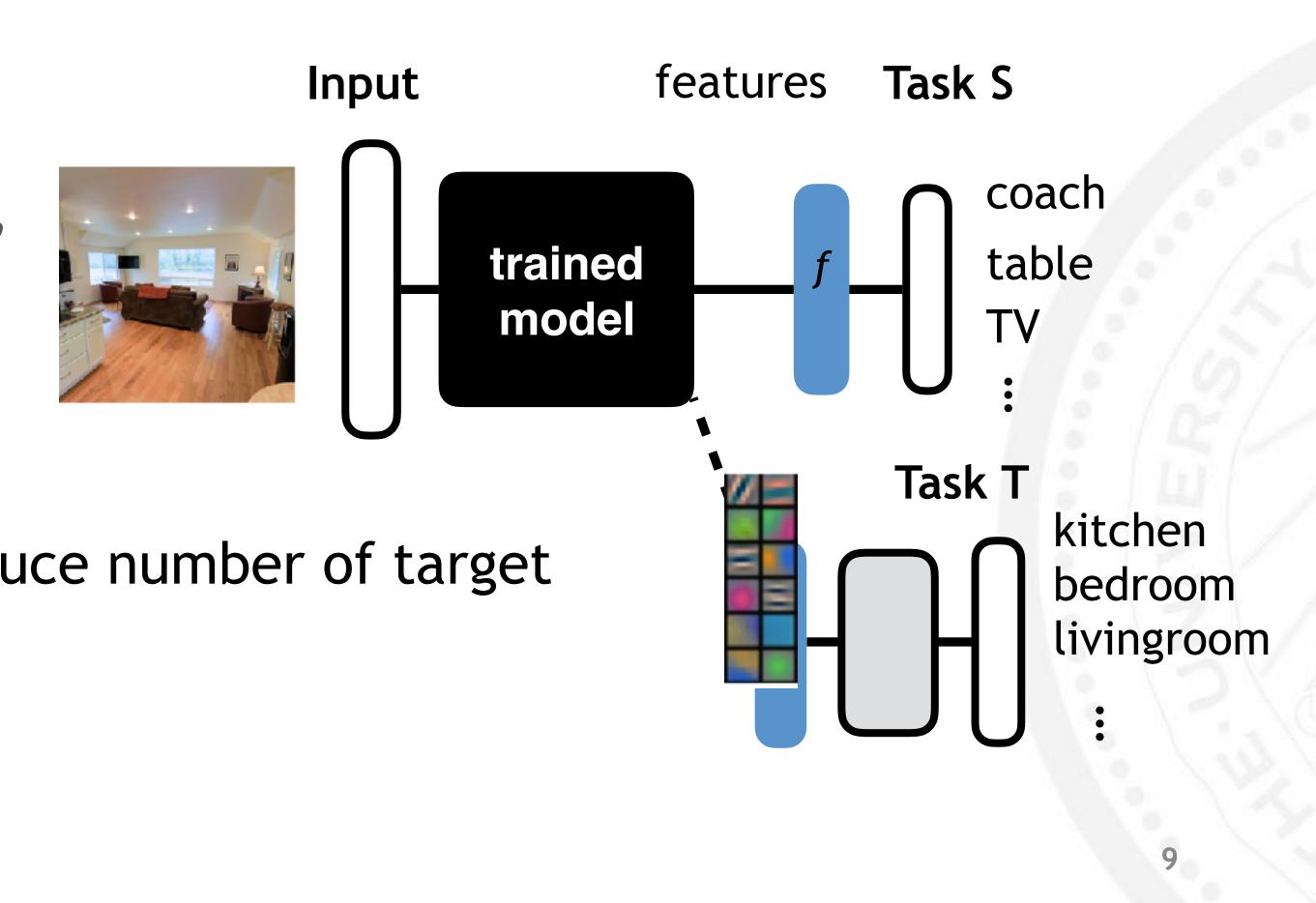
" Discriminability-Based Transfer between Neural Networks" (Pratt 1993):

Input: training data for task S and T, and a pre-trained source model

Goal: train task T

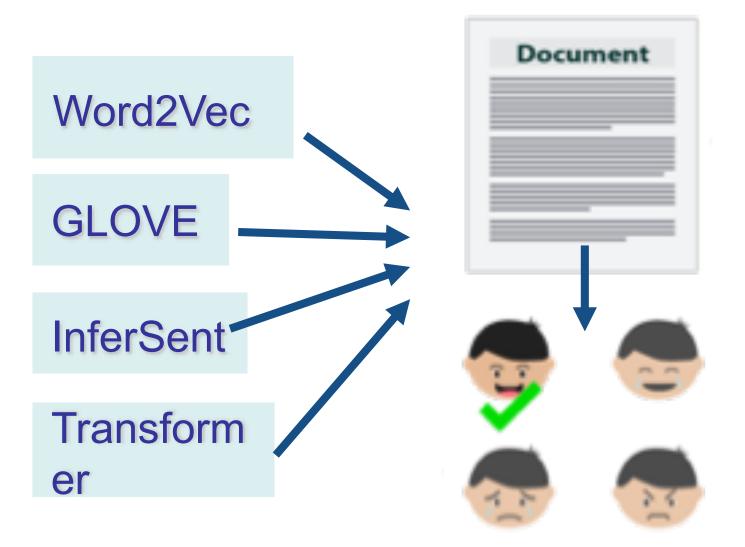
Improve target training efficiency, reduce number of target labeled data needed

Assumes represenation of S is transferable to T



Why Task Transferability is Important?

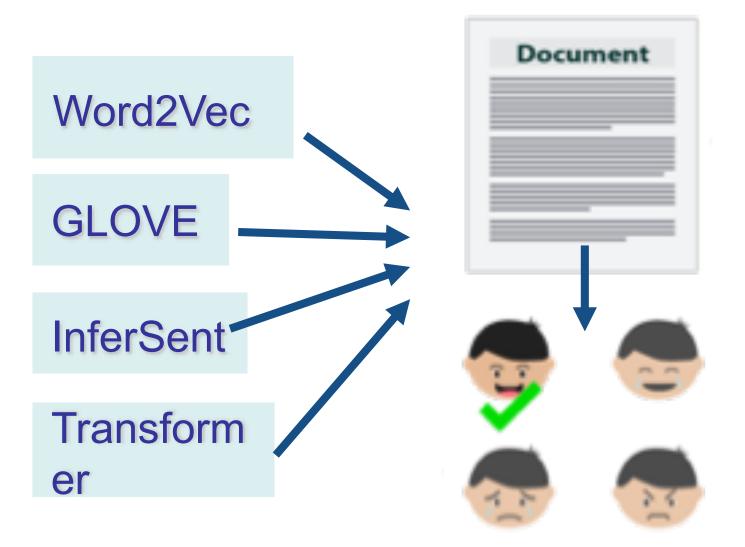
Model selection



e.g. Select the best word/sentence encoder for NLP tasks

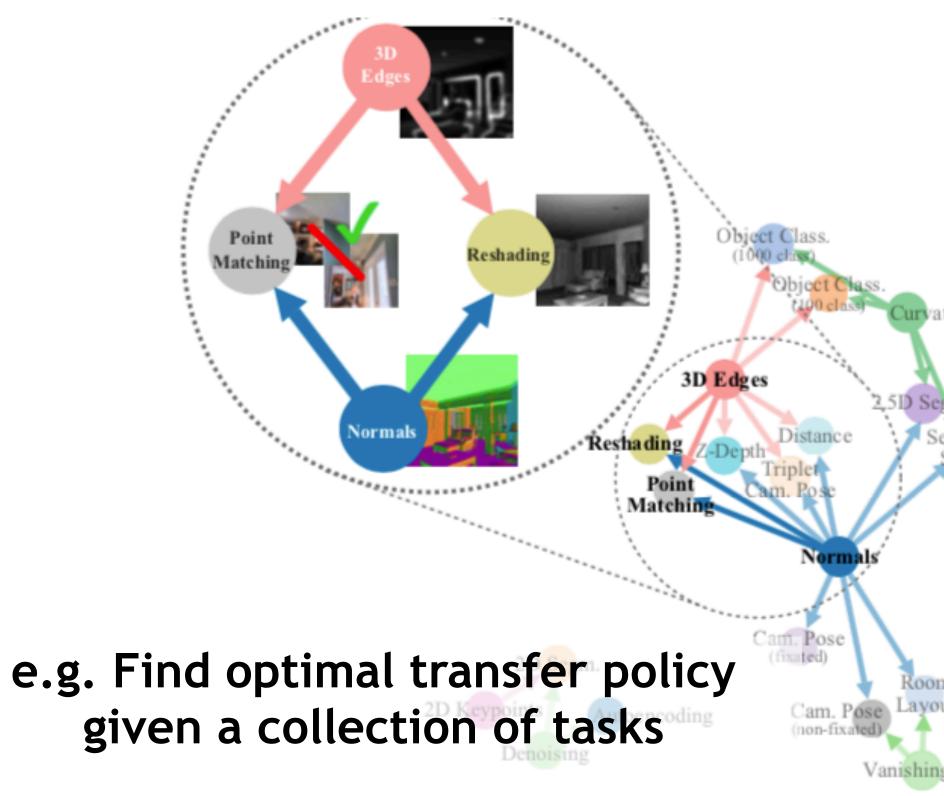
Why Task Transferability is Important?

Model selection

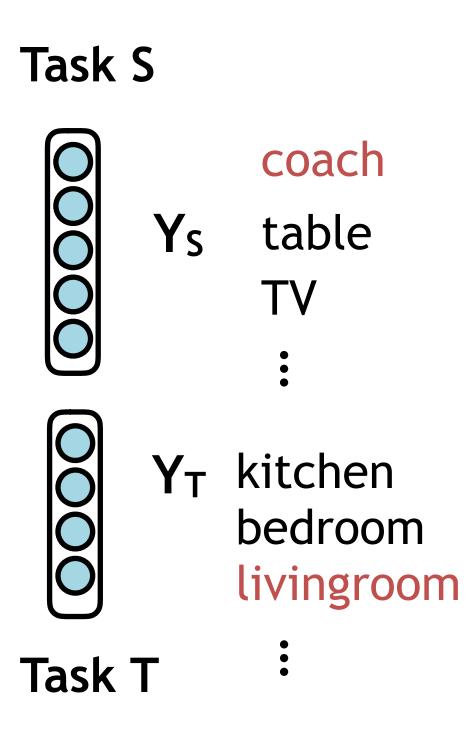


e.g. Select the best word/sentence encoder for NLP tasks

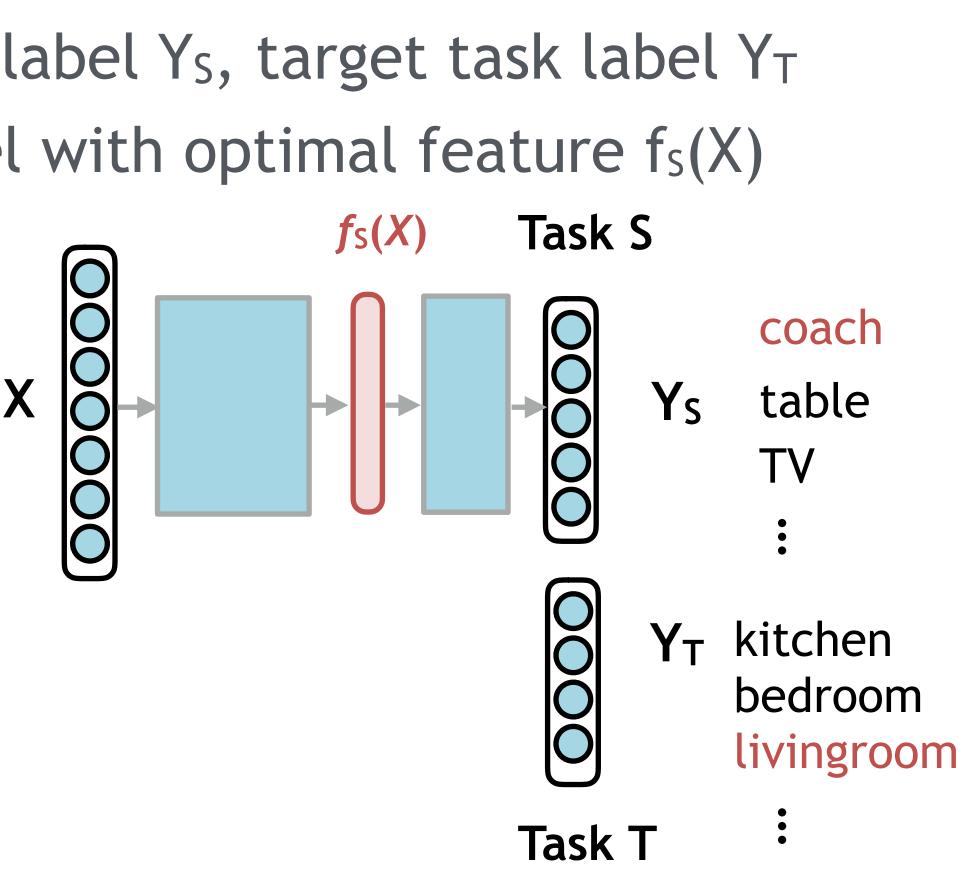
Task transfer policy learning



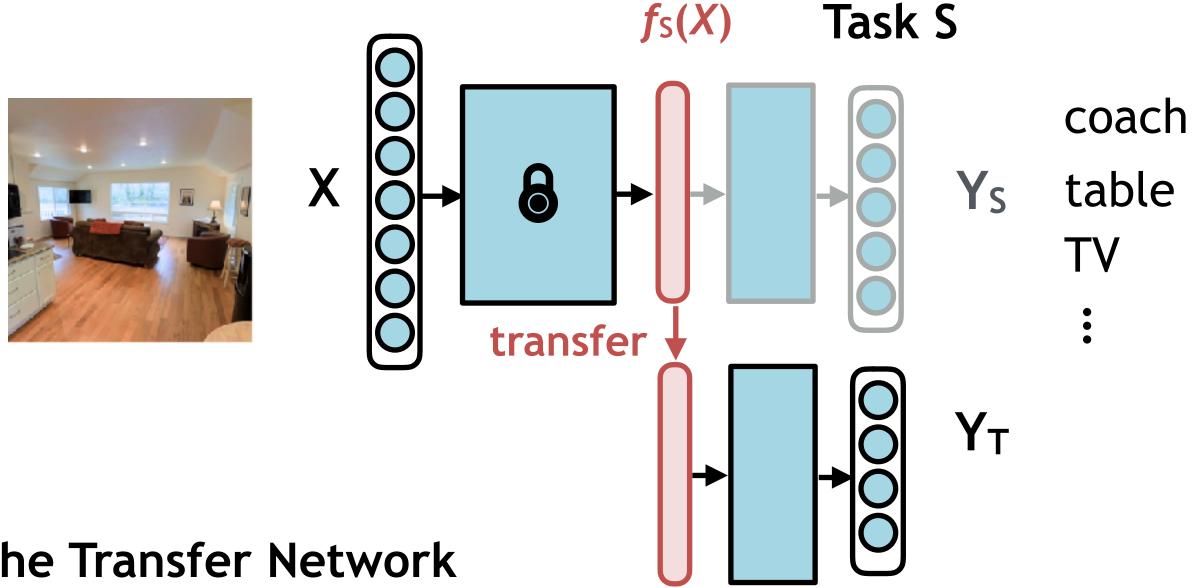
Input X, source task label Y_s, target task label Y_T



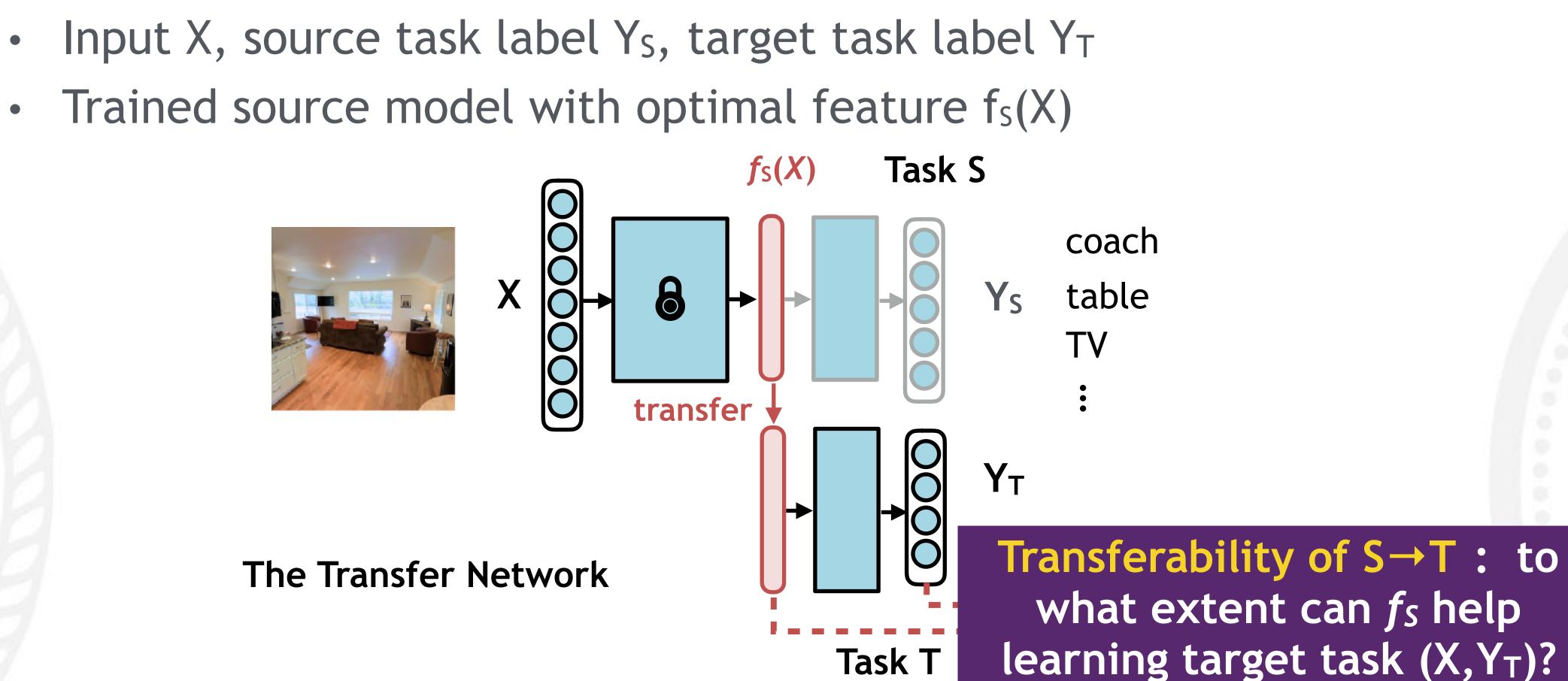
- Input X, source task label Y_S, target task label Y_T
- Trained source model with optimal feature $f_{s}(X)$ •



- Input X, source task label Y₅, target task label Y_T
- Trained source model with optimal feature $f_{S}(X)$



The Transfer Network



The Transfer Network

Related Works — Theoretical Results

- Why does transfer learning work?
- better to novel tasks
- Transfer bounds for linear feature learning (Maurer 2009)

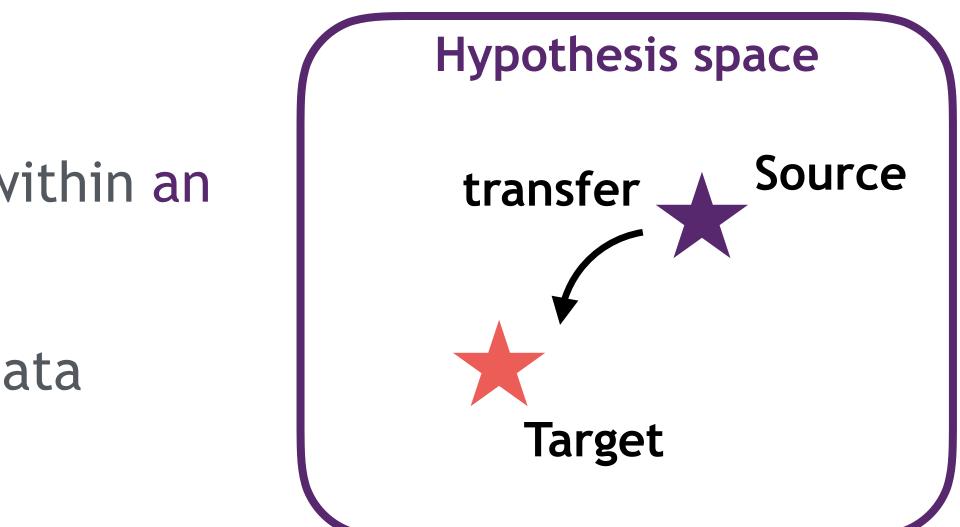
Inductive bias learning (Baxter 2000): Learning with multiple related tasks generalize

Related Works – Theoretical Results

- Why does transfer learning work?
- Inductive bias learning (Baxter 2000): Learning with multiple related tasks generalize better to novel tasks
 - Transfer bounds for linear feature learning (Maurer 2009)

Limitation

- Assumes hypotheses of all tasks are within an *environment* of related tasks
- Can not be computed directly from data



TBSI 清华-伯克利 Tsinghua-Berkeley Sh Related Works – Empirical Transferability

Empirical Approach: measure transfer results based on model loss / accuracy

- e.g. Feature transferability in Neural Network (Yosinski 2014), Taskonomy (Zamir et. al 2018), Shape Inductive Biases (Feinman & Lake 2018)

TBSI 清华-伯克利 Tsinghua-Berkeley Sl Related Works — Empirical Transferability

Empirical Approach: measure transfer results based on model loss / accuracy

e.g. Feature transferability in Neural Network (Yosinski 2014), Taskonomy (Zamir et. al 2018), Shape Inductive Biases (Feinman & Lake 2018)

Limitation:

need to train the transfer network using gradient descend

inefficient

TBSI 清华-伯克希 Tsinghua-Berkeley S Related Works — Empirical Transferability

Empirical Approach: measure transfer results based on model loss / accuracy

e.g. Feature transferability in Neural Network (Yosinski 2014), Taskonomy (Zamir et. al 2018), Shape Inductive Biases (Feinman & Lake 2018)

Limitation:

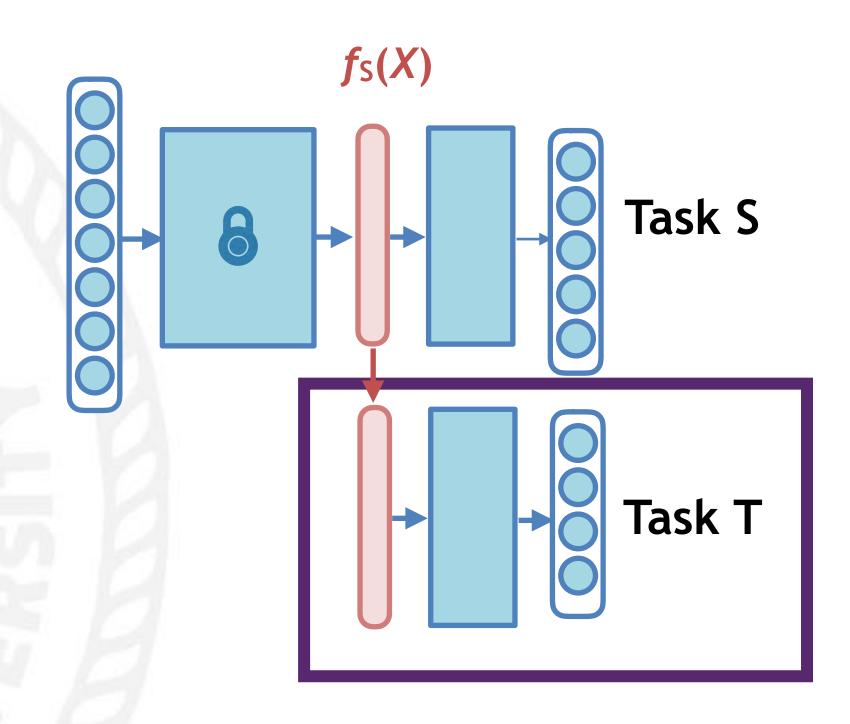
need to train the transfer network using gradient descend

inefficient

Can we estimate the transfer performance without any training of the target network?

Task Transferability

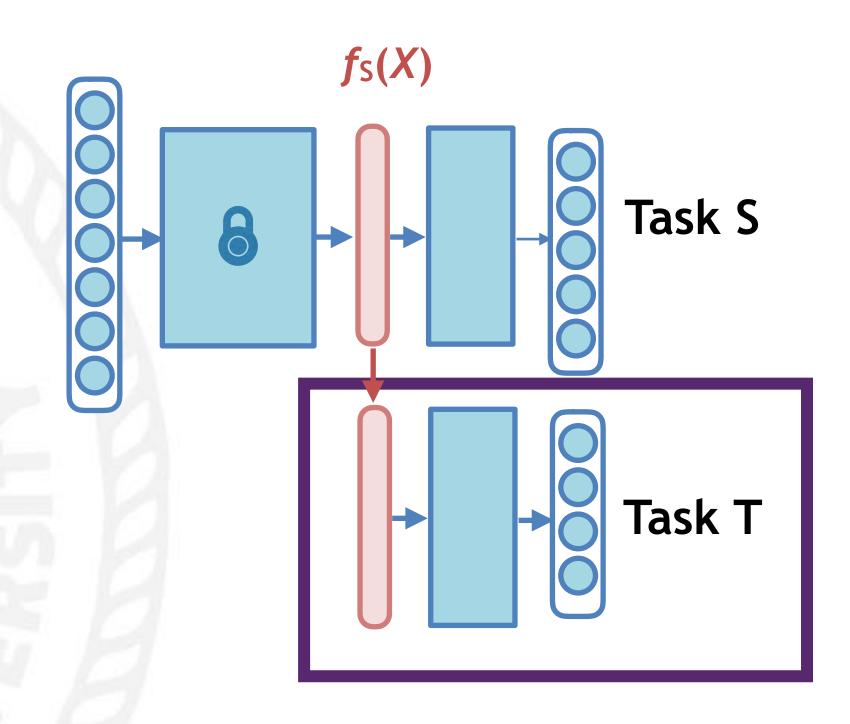
Transferability from Task S to Task T



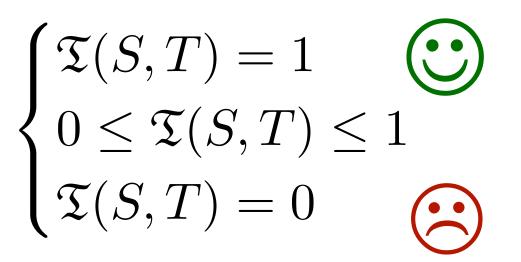
$\mathfrak{T}(S,T) \triangleq \frac{\text{Target Performance of } f_S}{\text{Optimal Target Performance}}$

Task Transferability

Transferability from Task S to Task T

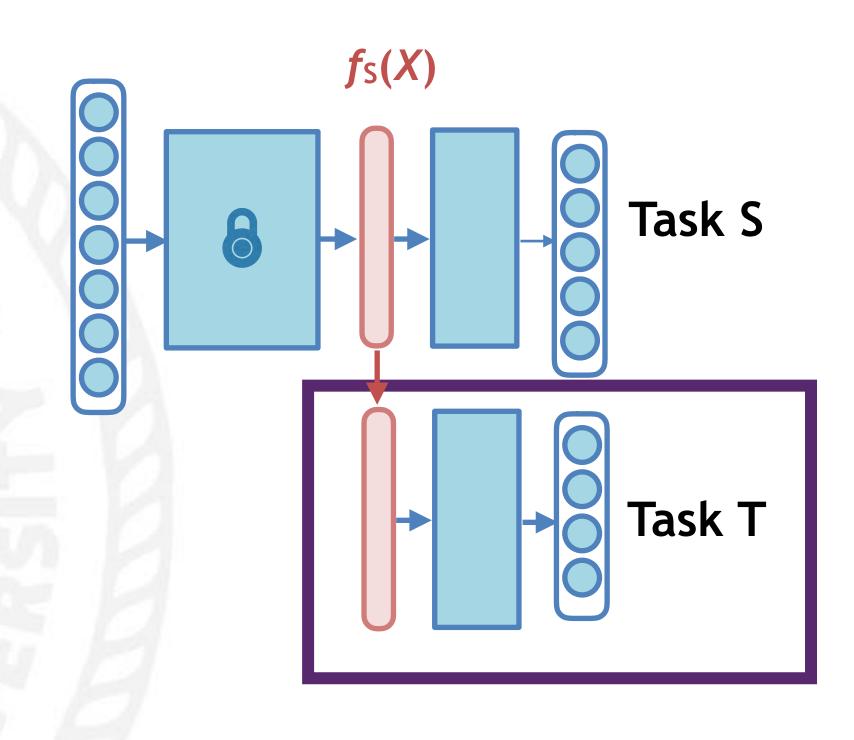


$\mathfrak{T}(S,T) \triangleq \frac{\text{Target Performance of } f_S}{\text{Optimal Target Performance}}$

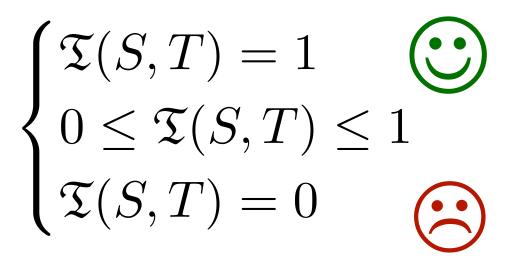


Task Transferability

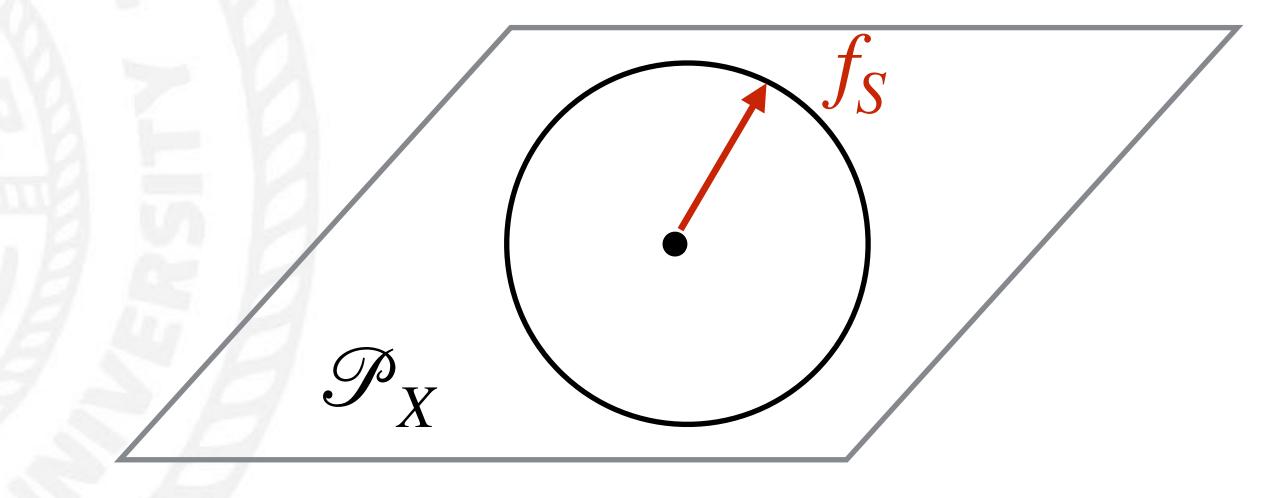
Transferability from Task S to Task T



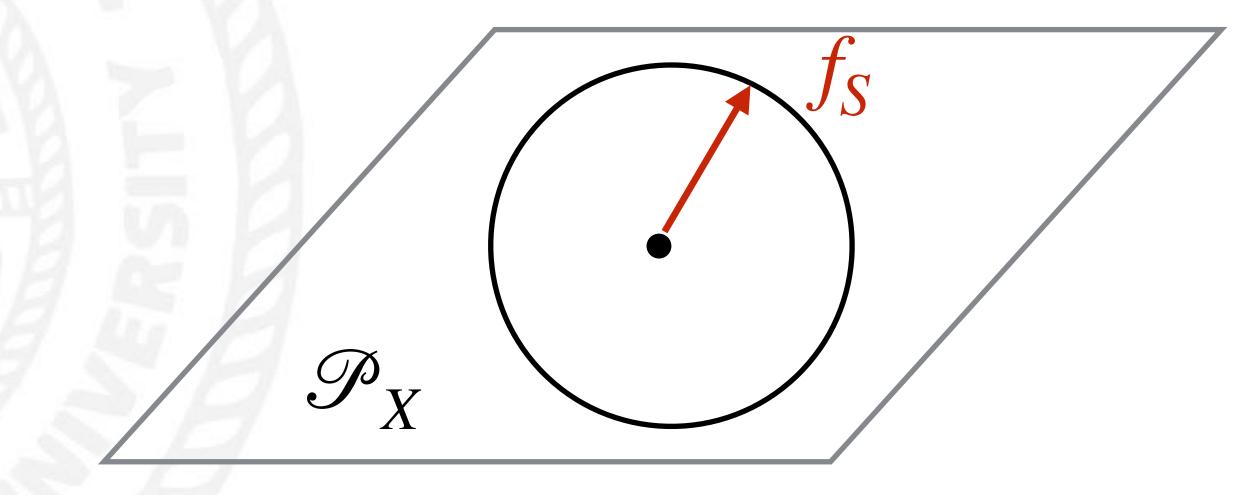
$\mathfrak{T}(S,T) \triangleq \frac{\text{Target Performance of } f_S}{\text{Optimal Target Performance}}$



How to measure the performance of $f_{S}(X)$ on target task (X, Y_{T}) ?

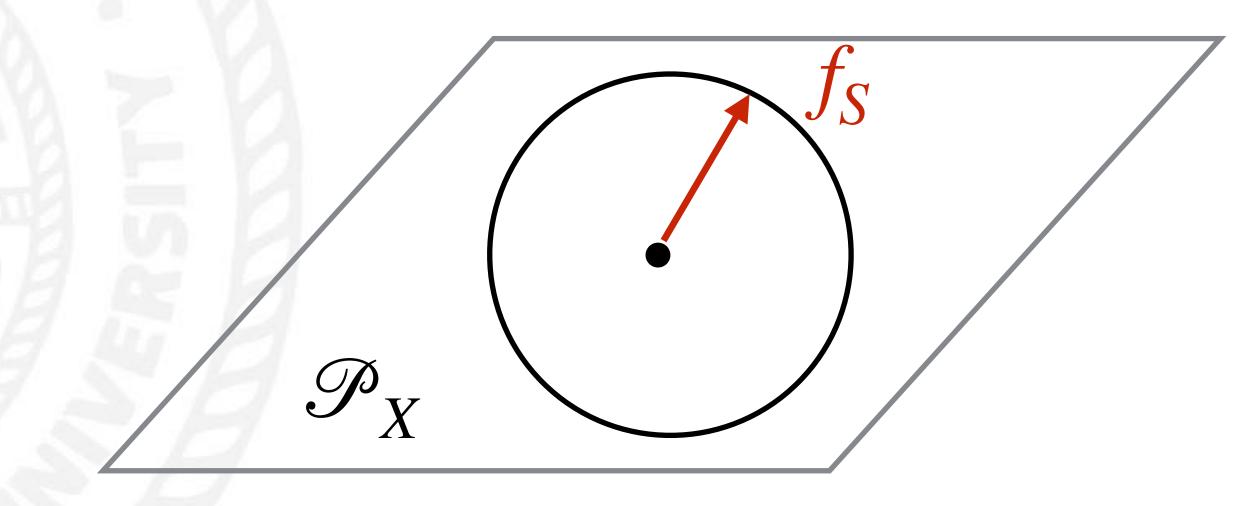


Local information geometry (Huang et al. 2017)



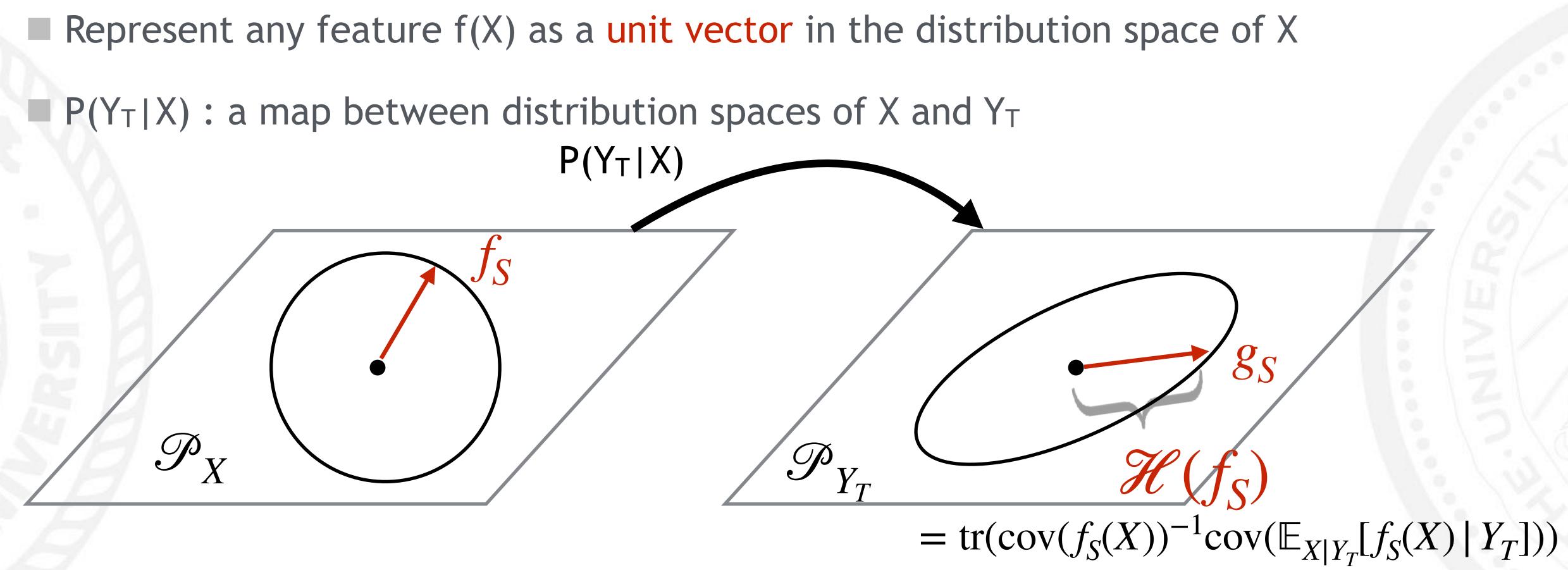
Local information geometry (Huang et al. 2017)

Represent any feature f(X) as a unit vector in the distribution space of X

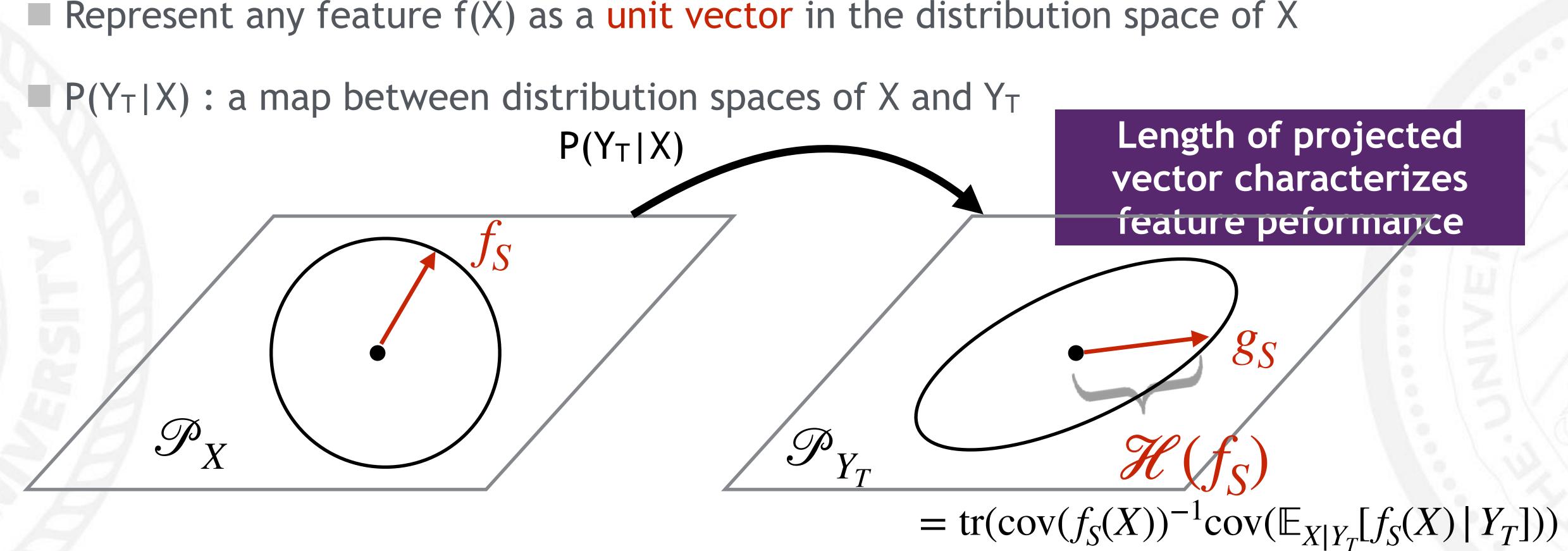


- Local information geometry (Huang et al. 2017)

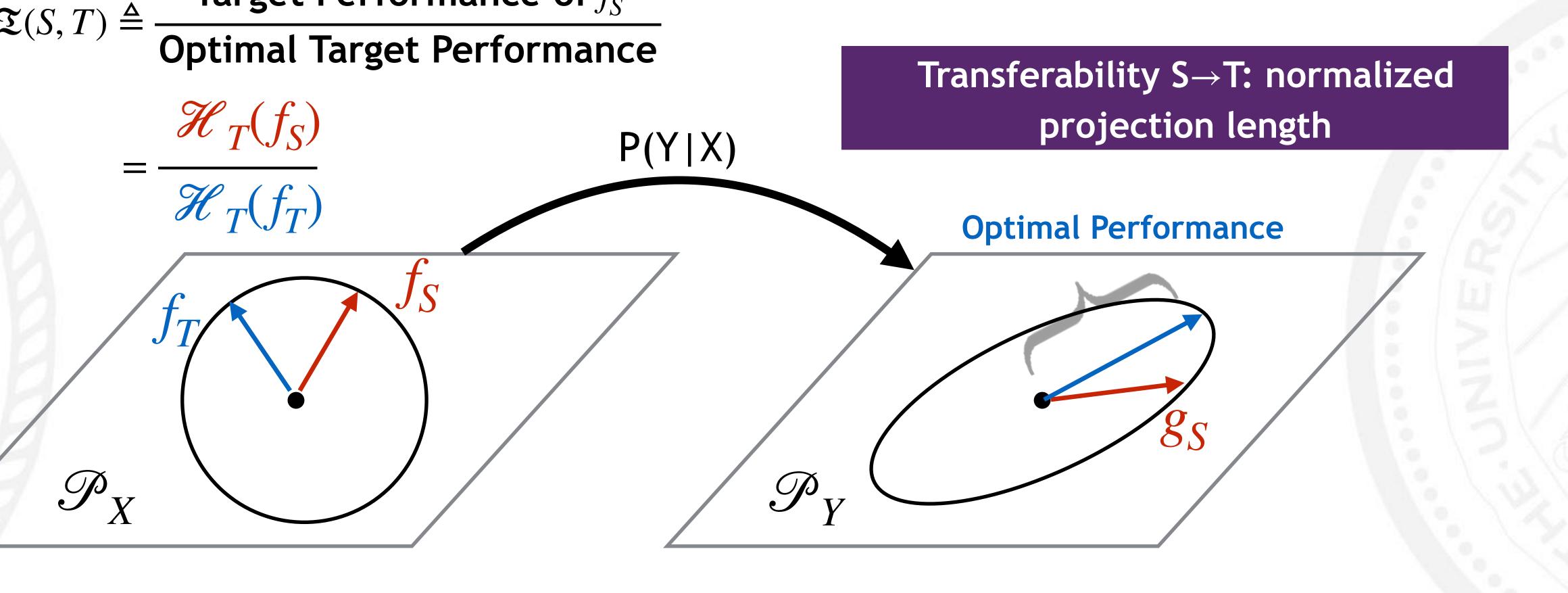
 - $P(Y_T | X)$



- Local information geometry (Huang et al. 2017)
- Represent any feature f(X) as a unit vector in the distribution space of X
 - $P(Y_T | X)$

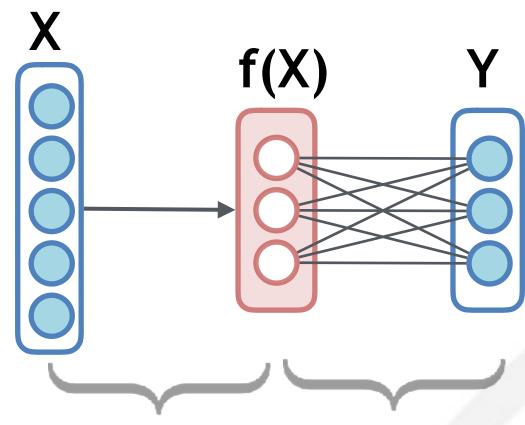


- Feature with maximum projection length: f_T
 - $\mathfrak{T}(S,T) \triangleq \frac{\text{Target Performance of } f_S}{\text{Optimal Target Performance}}$



Classification using log-loss:

- X, Y random variables; f(X) a zero-mean feature
 - **Expected log loss:** $L(f;\theta) = \mathbb{E}_{X,Y}[L(f(X),Y;\theta)]$

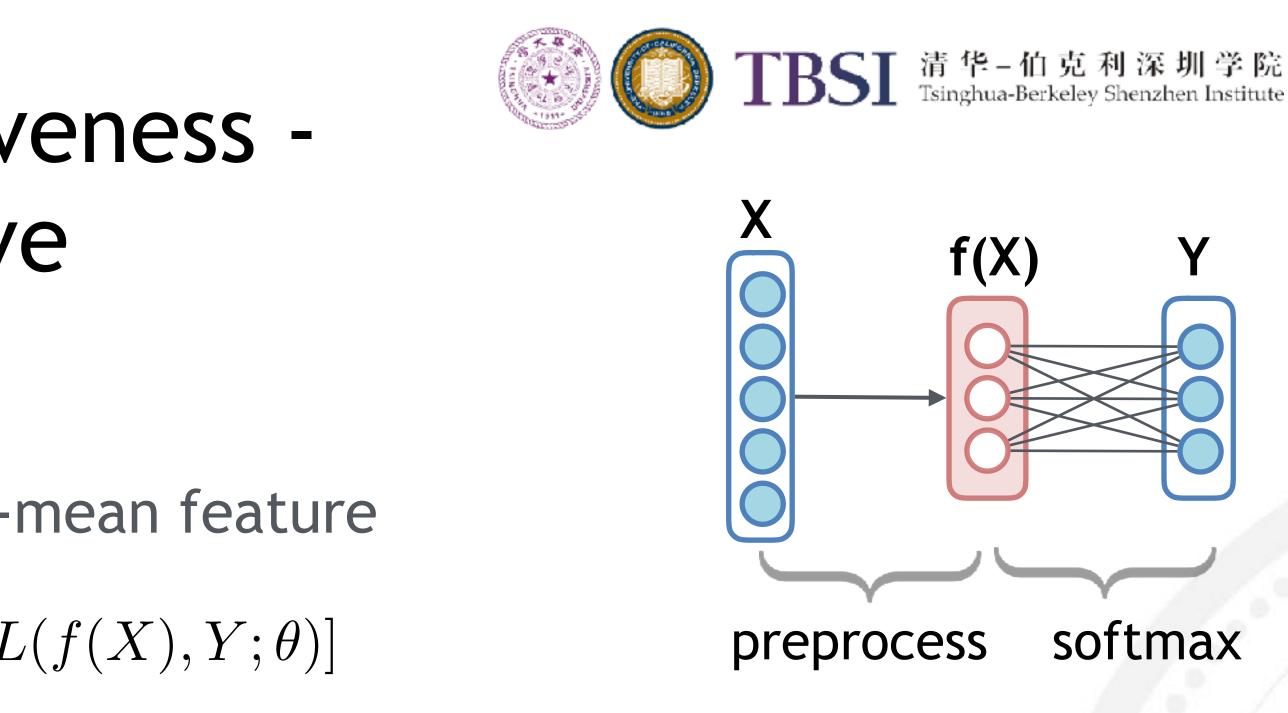


softmax preprocess

Classification using log-loss:

- X, Y random variables; f(X) a zero-mean feature
 - **Expected log loss:** $L(f;\theta) = \mathbb{E}_{X,Y}[L(f(X),Y;\theta)]$

 $L(f, \theta^{\star}) = Const(X, Y) - H(f) + o(\epsilon^2)$



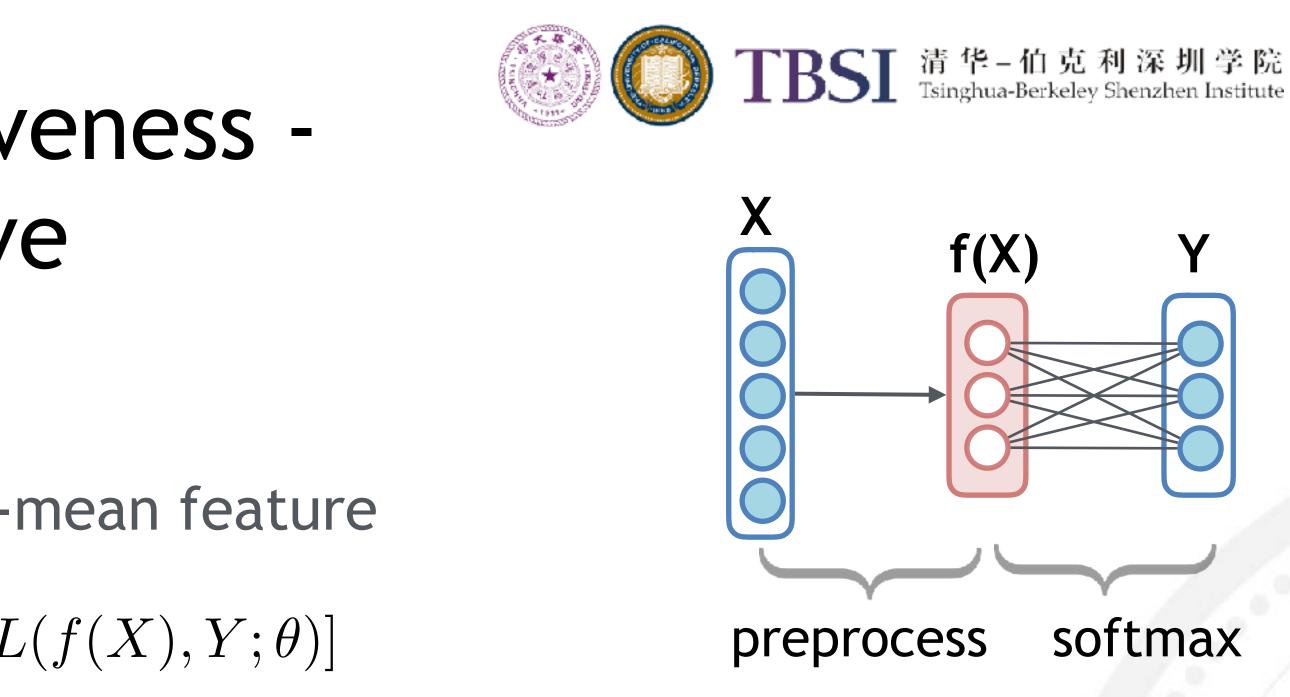
By Local information geometry [Huang 2018], given feature f(X), the optimal loss is

Classification using log-loss:

- X, Y random variables; f(X) a zero-mean feature
 - **Expected log loss:** $L(f;\theta) = \mathbb{E}_{X,Y}[L(f(X),Y;\theta)]$

 $L(f, \theta^{\star}) = Const$

$$\mathcal{H}(f) = \operatorname{tr}(\operatorname{cov}(f($$



By Local information geometry [Huang 2018], given feature f(X), the optimal loss is

$$f(X, Y) - H(f) + o(\epsilon^2)$$

H-score of f(X)

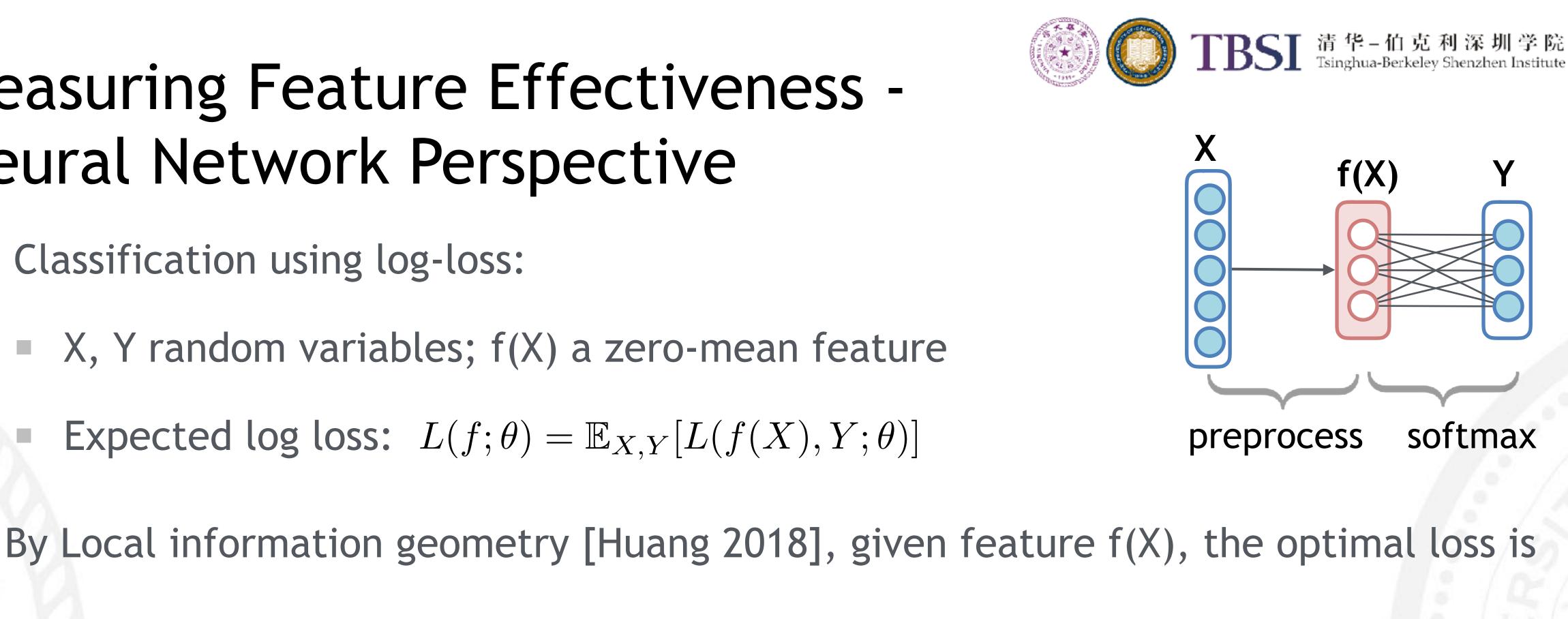
 $(X))^{-1}\operatorname{cov}(\mathbb{E}_{P_{X|Y}}[f(X)|Y]))$

Classification using log-loss:

- X, Y random variables; f(X) a zero-mean feature
 - **Expected log loss:** $L(f;\theta) = \mathbb{E}_{X,Y}[L(f(X),Y;\theta)]$

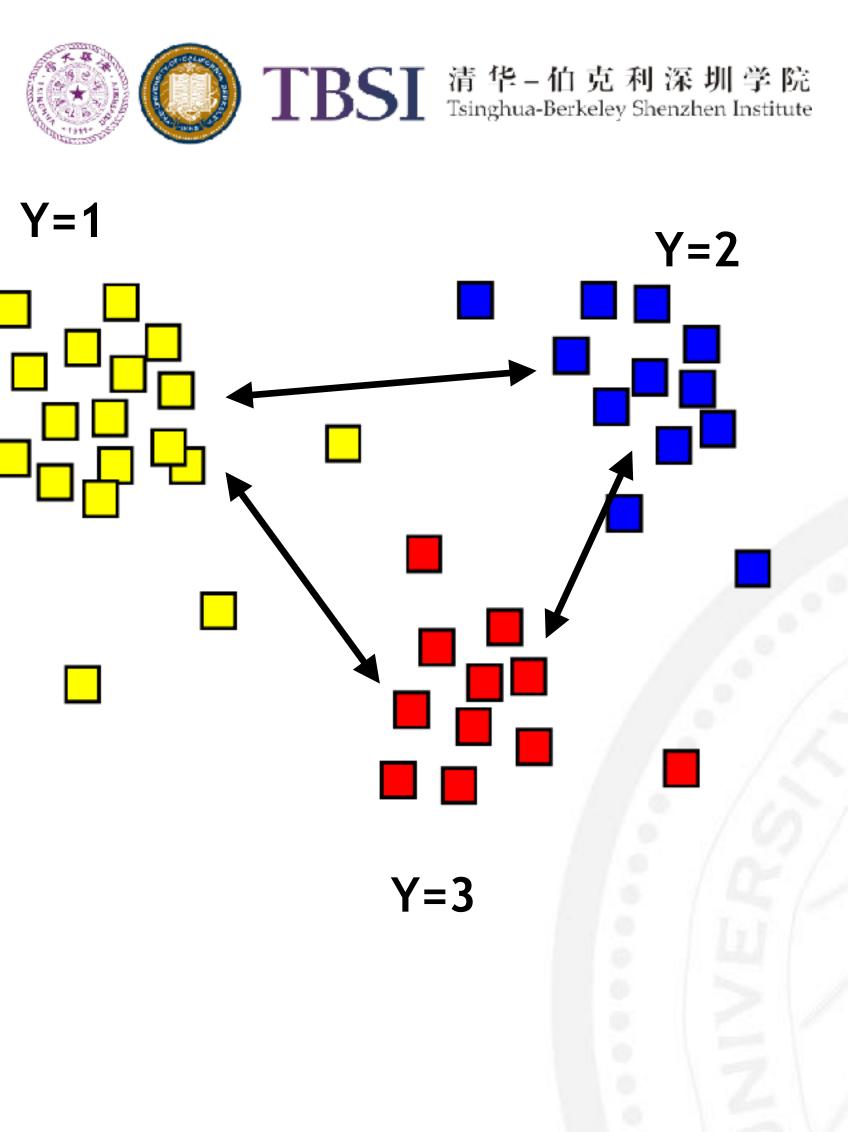
$$L(f, \theta^{\star}) = Const(X, Y) - H(f) + o(\epsilon^{2})$$

H-score of f(X)
$$Higher H-score => Better Performance$$
$$H(f) = tr(cov(f(X))^{-1}cov(\mathbb{E}_{P_{X|Y}}[f(X)|Y]))$$



Intuition in latent space

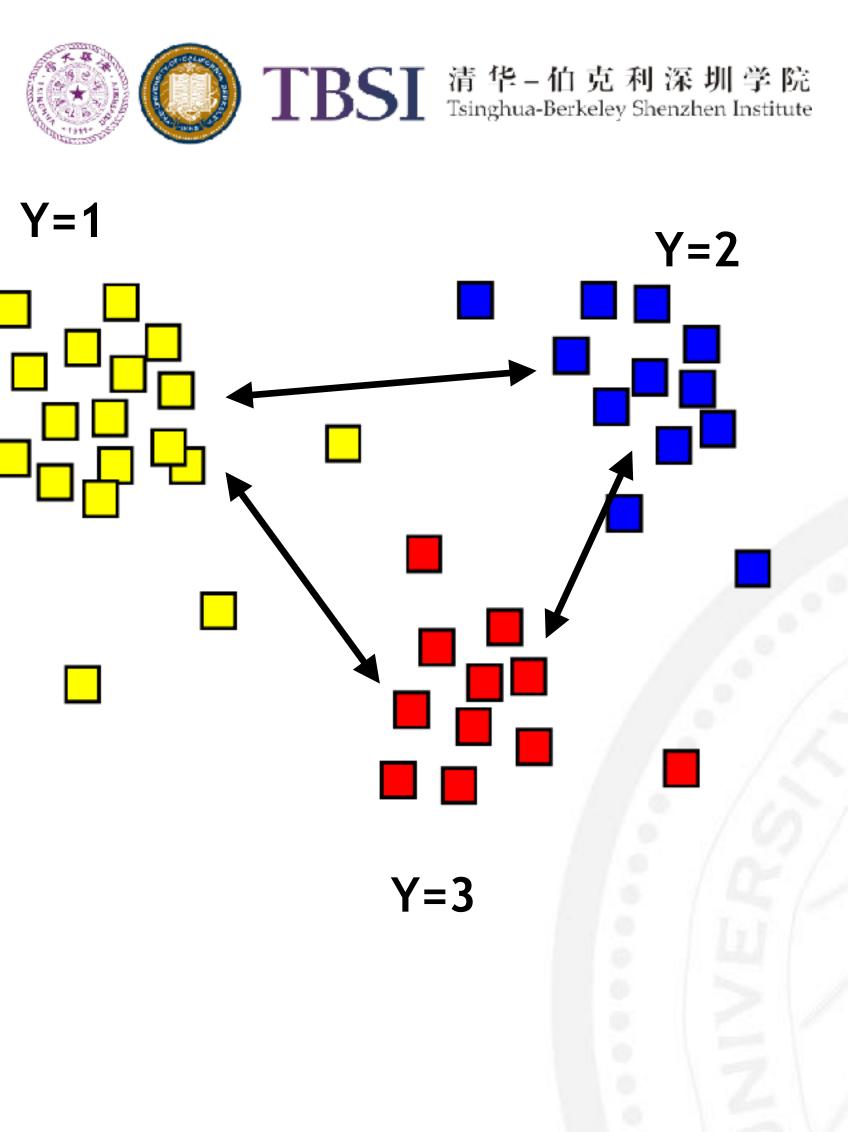
 $\mathscr{H}(f) = \operatorname{tr}(\operatorname{cov}(f(X))^{-1}\operatorname{cov}(\mathbb{E}_{X|Y}[f(X) \mid Y]))$



Intuition in latent space

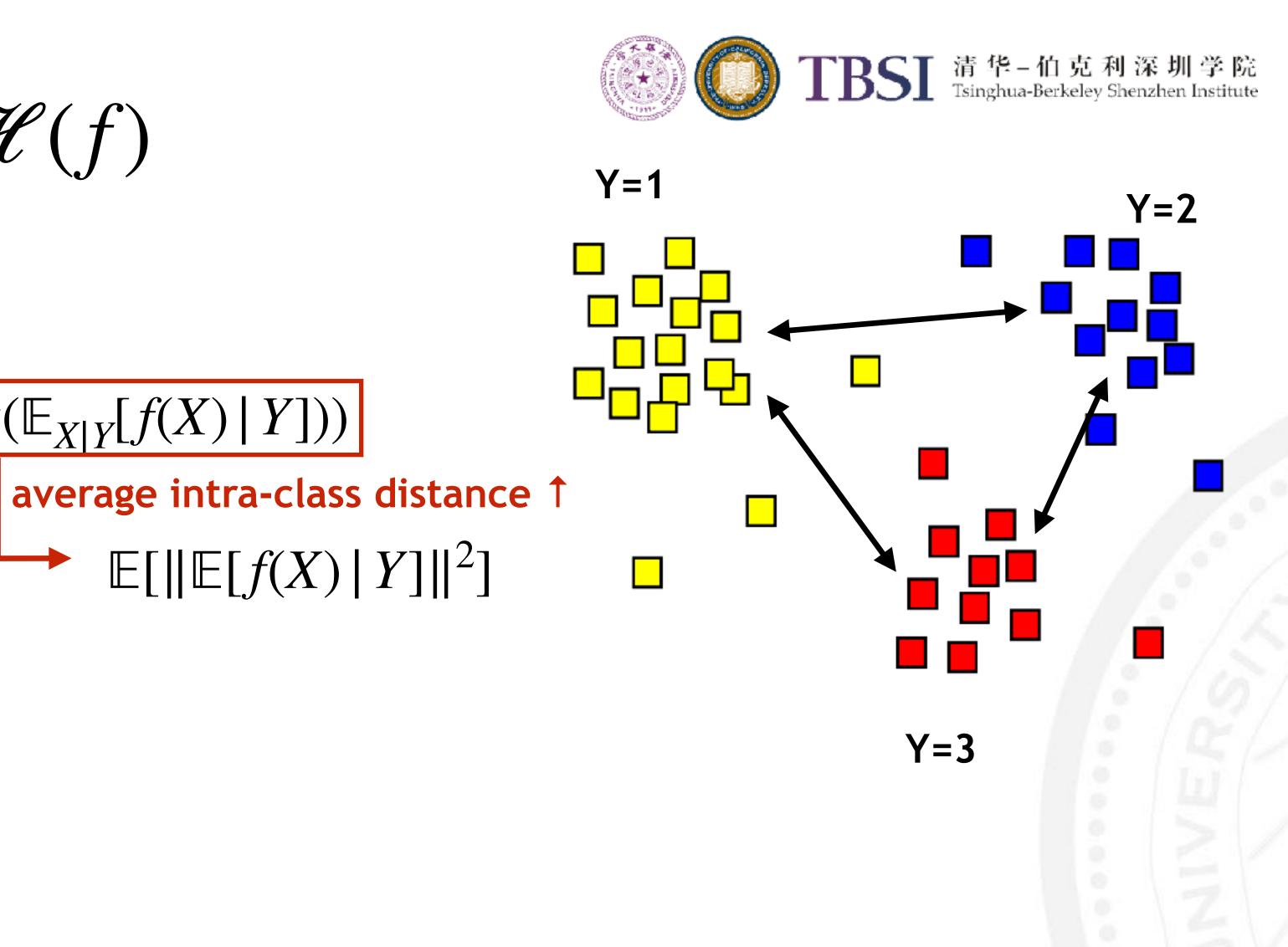
 $\mathscr{H}(f) = \operatorname{tr}(\operatorname{cov}(f(X))^{-1}\operatorname{cov}(\mathbb{E}_{X|Y}[f(X) \mid Y]))$

feature redundancy ↓



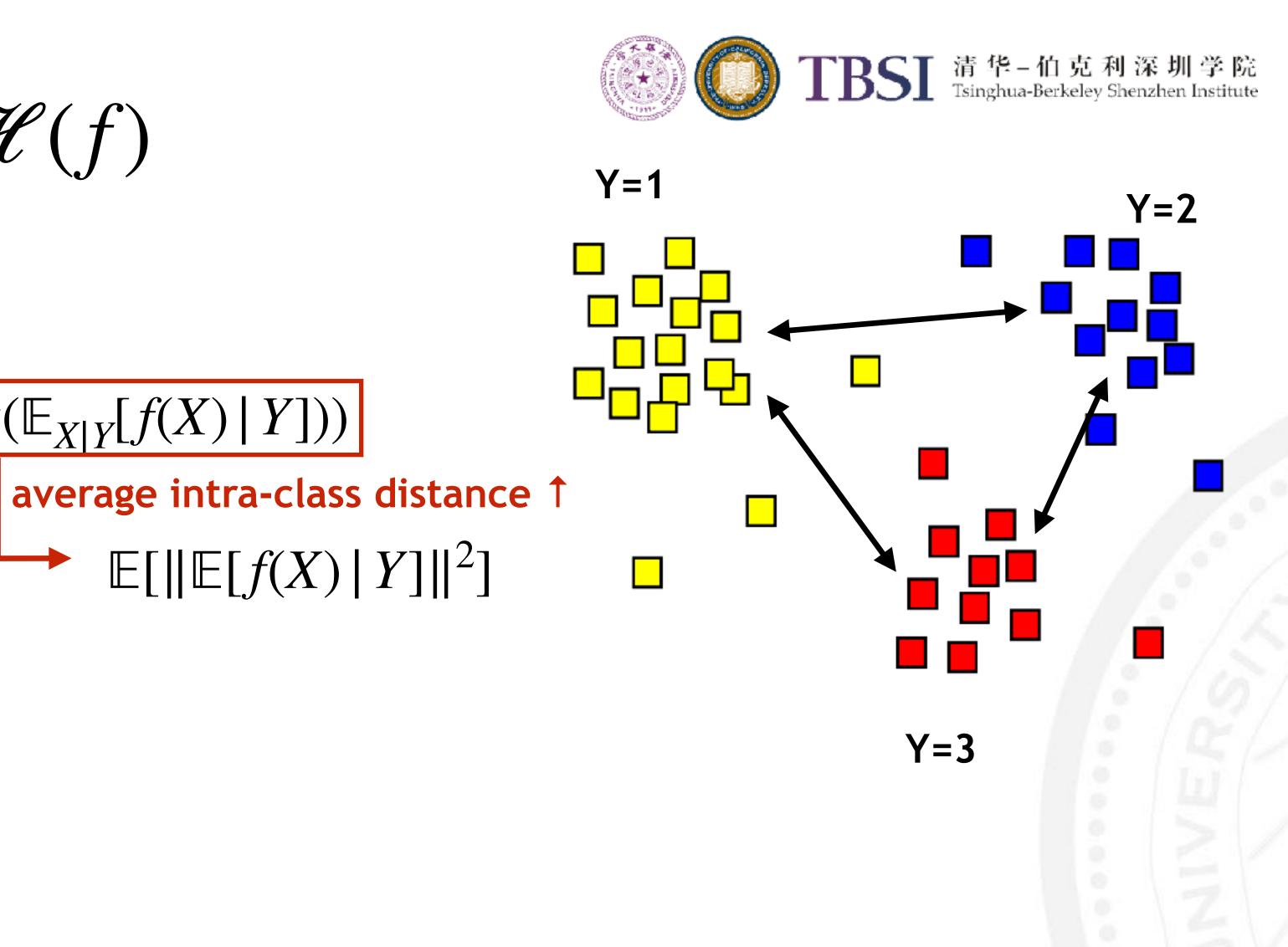
Intuition in latent space

 $\mathscr{H}(f) = \operatorname{tr}(\operatorname{cov}(f(X))^{-1}\operatorname{cov}(\mathbb{E}_{X|Y}[f(X)|Y]))$ feature redundancy ↓



Intuition in latent space

 $\mathscr{H}(f) = \operatorname{tr}(\operatorname{cov}(f(X))^{-1}\operatorname{cov}(\mathbb{E}_{X|Y}[f(X) \mid Y]))$ feature redundancy ↓ H-score 1



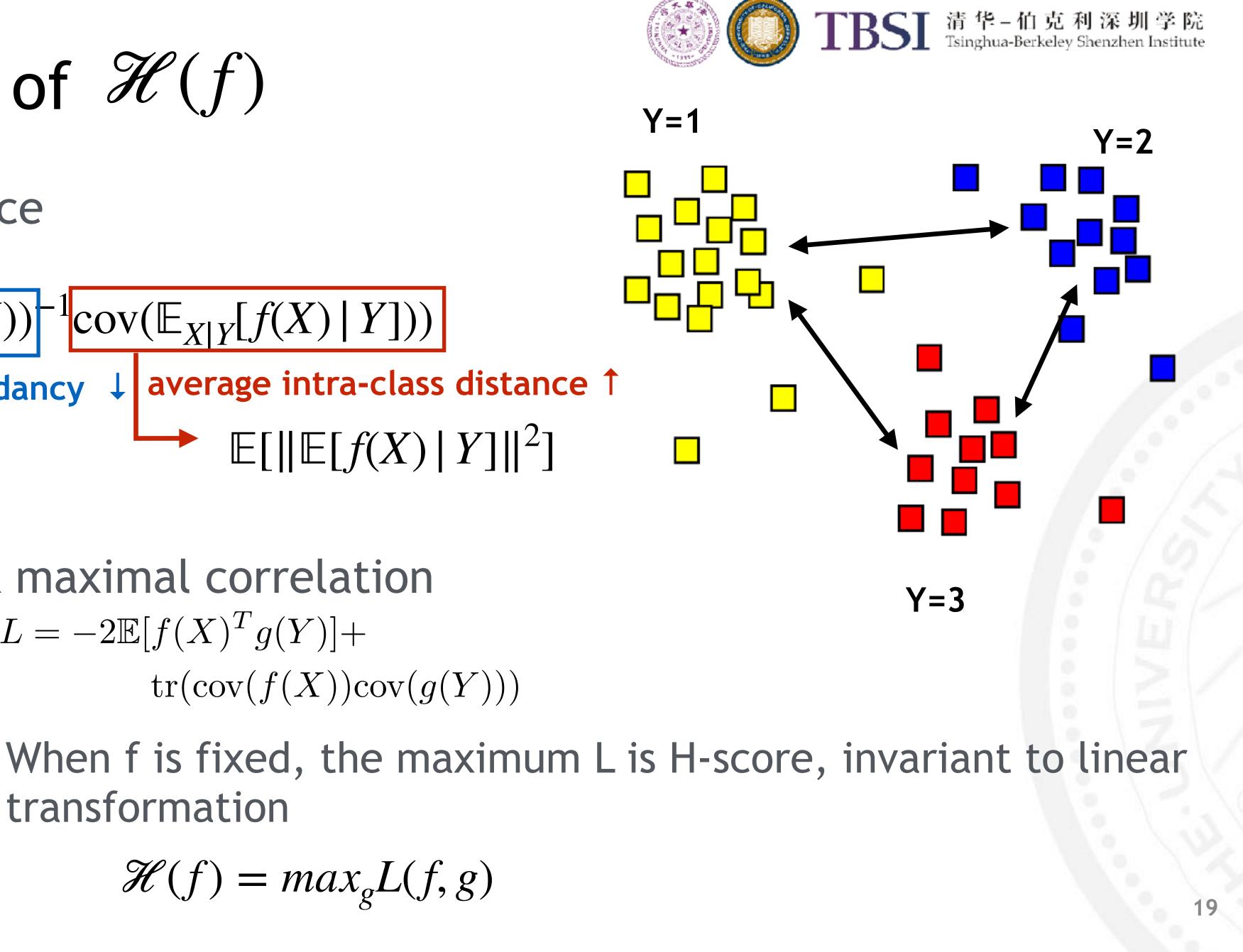
Intuition in latent space

Y - model g

$$\mathcal{H}(f) = \operatorname{tr}(\operatorname{cov}(f(X)))^{-1} \operatorname{cov}(\mathbb{E}_{X|Y}[f(X))]^{-1} \operatorname{cov}(\mathbb{E}_{X|Y}[f(X))]^{-1}$$

Relationship with HGR maximal correlation $L = -2\mathbb{E}[f(X)^T g(Y)] +$ **X** model f

transformation



 $\operatorname{tr}(\operatorname{cov}(f(X))\operatorname{cov}(g(Y)))$

 $\mathscr{H}(f) = max_{g}L(f,g)$

Computing Transferability

$$\mathfrak{T}(S,T) = \frac{\mathscr{H}_T(f_S)}{\mathscr{H}_T(f_T)}$$

Computing H-score: \$\mathcal{H}_T(f_S)\$
Easy to compute
O(mk²) time complexity

Python Code for H-Score

```
def <u>Hscore(f,Y):</u>
  Covf=np.cov(f)
  alphabetY=list(set(Y))
  g=np.zeros_like(f)
  for z in alphabetY:
    g[Y==y]=np.mean(f[Y==y,:], axis=0)
  Covg=np.cov(g)
  score=np.trace(np.dot(np.linalg.pinv(Covf,
        rcond=le-15), Covg))
  return score
```


Computing Transferability

$$\mathfrak{T}(S,T) = \frac{\mathscr{H}_T(f_S)}{\mathscr{H}_T(f_T)}$$

Computing H-score: $\mathcal{H}_T(f_S)$

Easy to compute

O(mk²) time complexity

Maximal H-score: $\mathcal{H}_T(f_T)$

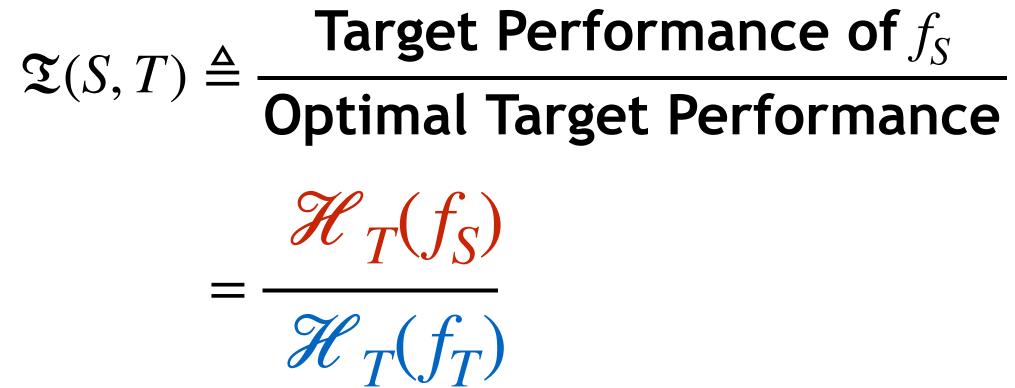
Equivalent to computing the HGR maximal correlation

Discrete X: Alternating Conditional Expectation (ACE) algorithm (Huang et. al. 2015); Continuous X: Neural network formulation

Python Code for H-Score

```
def Hscore(f,Y):
  Covf=np.cov(f)
  alphabetY=list(set(Y))
  g=np.zeros_like(f)
  for z in alphabetY:
    g[Y==y]=np.mean(f[Y==y,:], axis=0)
  Covg=np.cov(g)
  score=np.trace(np.dot(np.linalg.pinv(Covf,
         rcond=le-15), Covg))
  return score
```


Source Task Selection



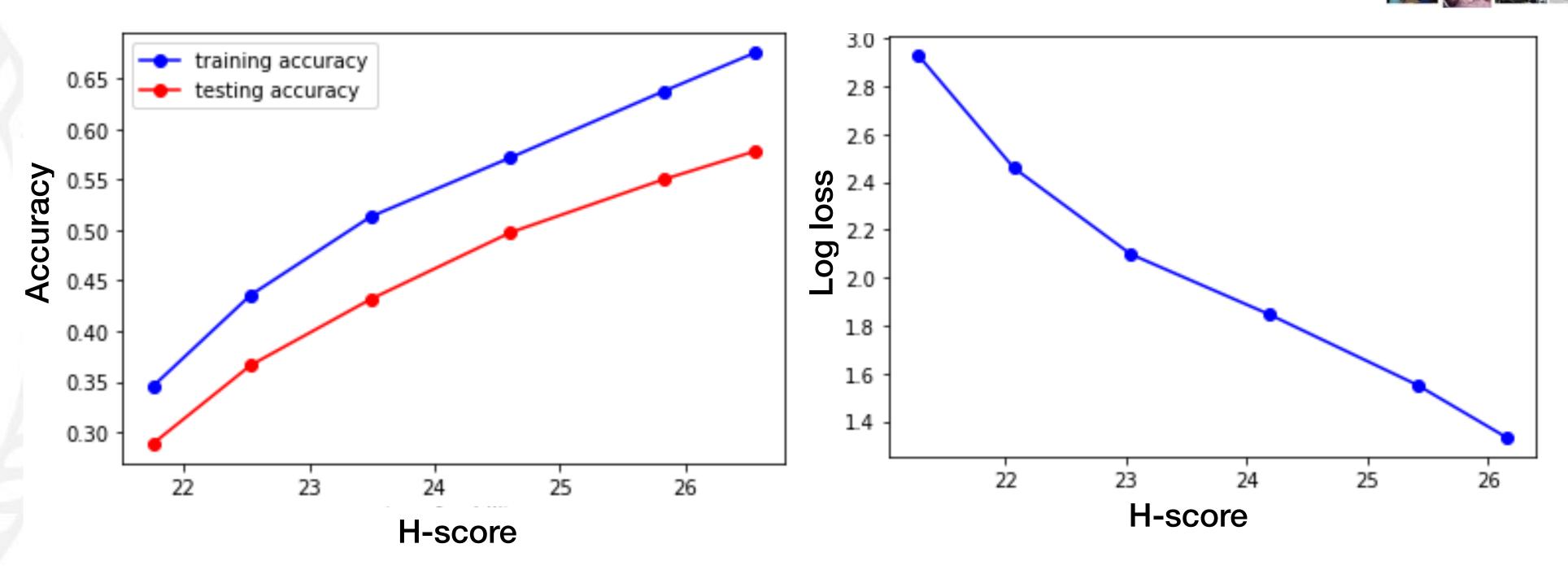
Source task selection problem: Given source tasks S₁,

- S₂, ..., S_n. Which one is most transferable to target task
 - Since T is fixed, we only need to compare $\mathscr{H}_T(f_{S_1}), \mathscr{H}_T(f_{S_2}), \dots$

Results: Image Classification Feature Selection

Source task: ImageNet 1000 classification (ResNet50 features) from 6 layers 4a-5f)

Target task: Cifar 100-class classification on 20,000 images

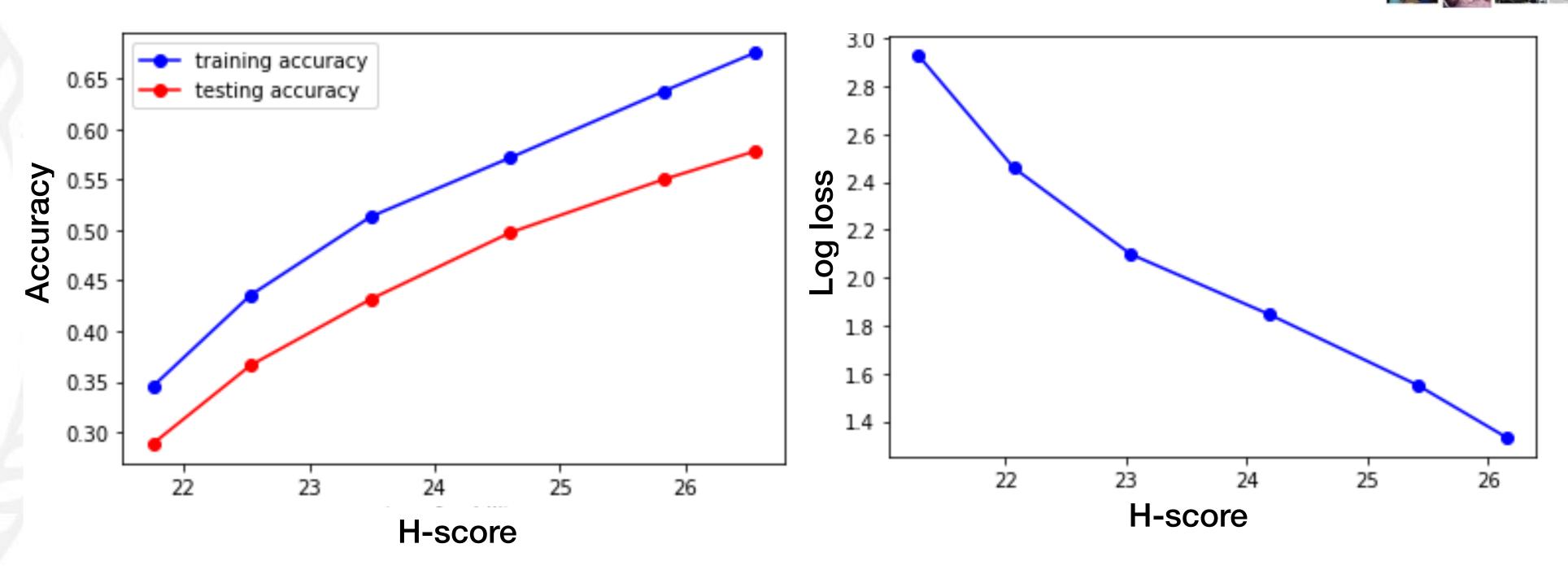


n 🛃 🧟 📷 🎯 🐜 🧏

Results: Image Classification Feature Selection

Source task: ImageNet 1000 classification (ResNet50 features) from 6 layers 4a-5f)

Target task: Cifar 100-class classification on 20,000 images

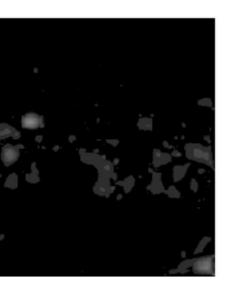


n 🛃 🧟 📷 🎯 🐜 🧏

Query Image

2D Edges

3D (Occlusion) Edges



2D Keypoints

3D Keypoints

Image Reshading

Depth

Query Image

2D Edges

3D (Occlusion) Edges

- 8 image-based tasks from Taskonomy dataset (Zamir et al. 2018) 2 classification tasks: object-class, scene-class

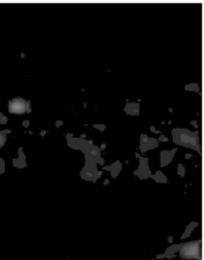


Image Reshading

Depth

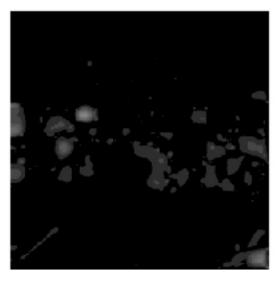
2D Keypoints

3D Keypoints

6 2D/3D image-to-image tasks: average H-score over all superpixels

Query Image

2D Edges



3D (Occlusion) Edges

8 image-based tasks from Taskonomy dataset (Zamir et al. 2018) 2 classification tasks: object-class, scene-class 6 2D/3D image-to-image tasks: average H-score over all superpixels

Image Reshading

2D Keypoints

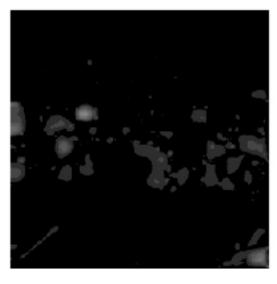
3D Keypoints

Depth

- Source models: pre-trained task-specific models (4,000,000 training samples);

Query Image

2D Edges



3D (Occlusion) Edges

8 image-based tasks from Taskonomy dataset (Zamir et al. 2018) 2 classification tasks: object-class, scene-class 6 2D/3D image-to-image tasks: average H-score over all superpixels Target model: linear feature transfer using 20,000 images (64 x 64)

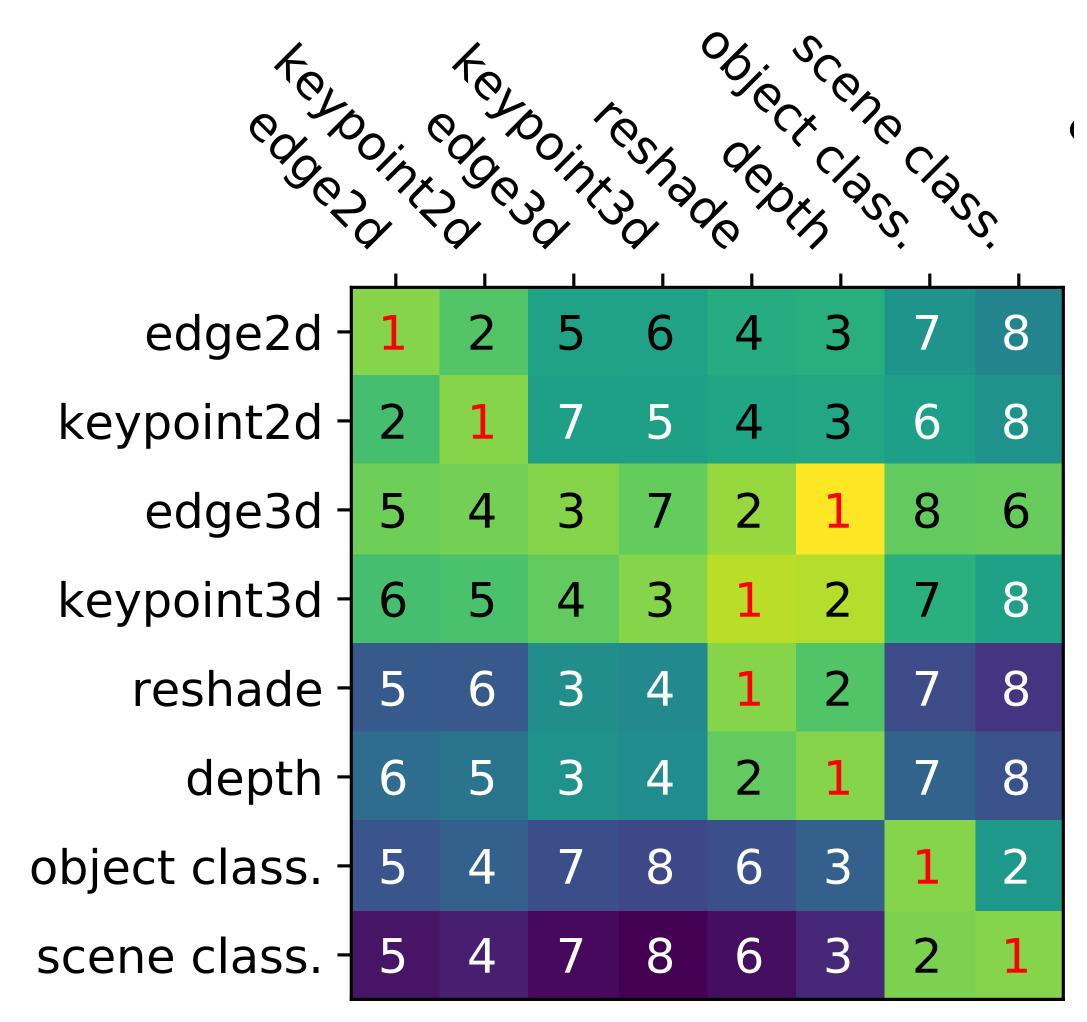
Image Reshading

2D Keypoints

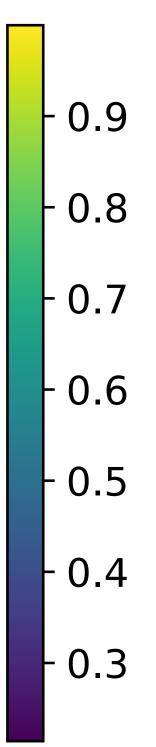
3D Keypoints

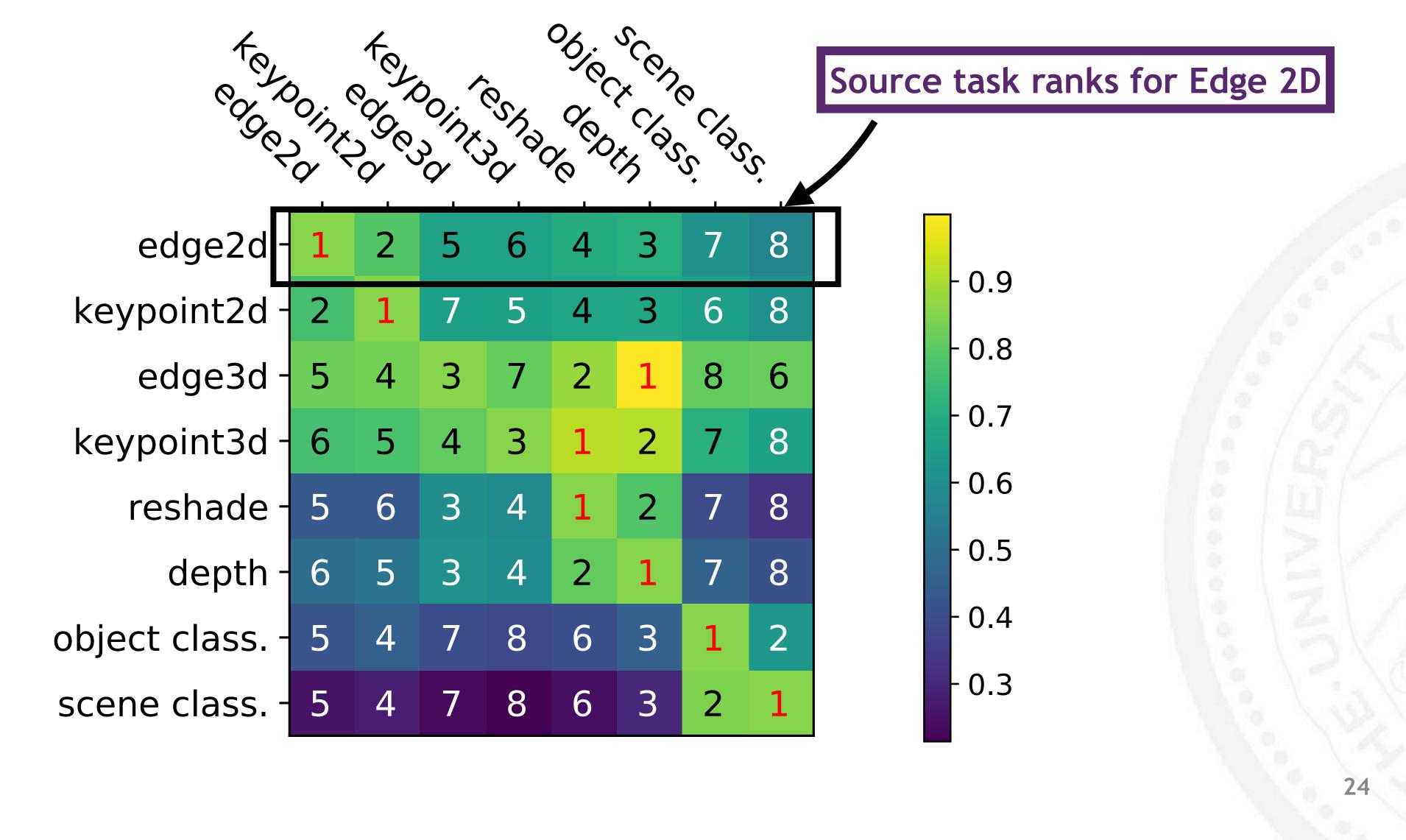
Depth

- Source models: pre-trained task-specific models (4,000,000 training samples);

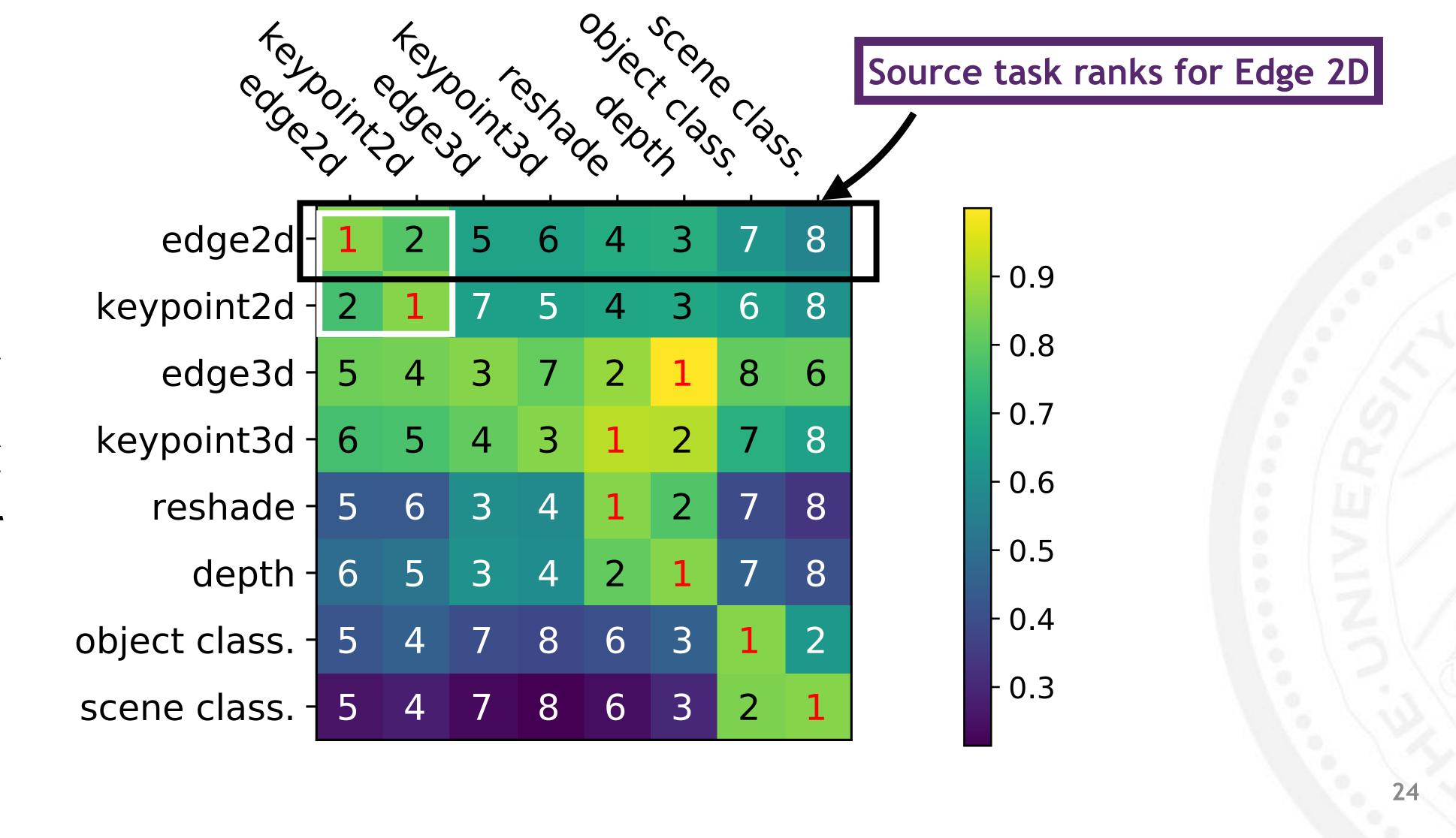


target task

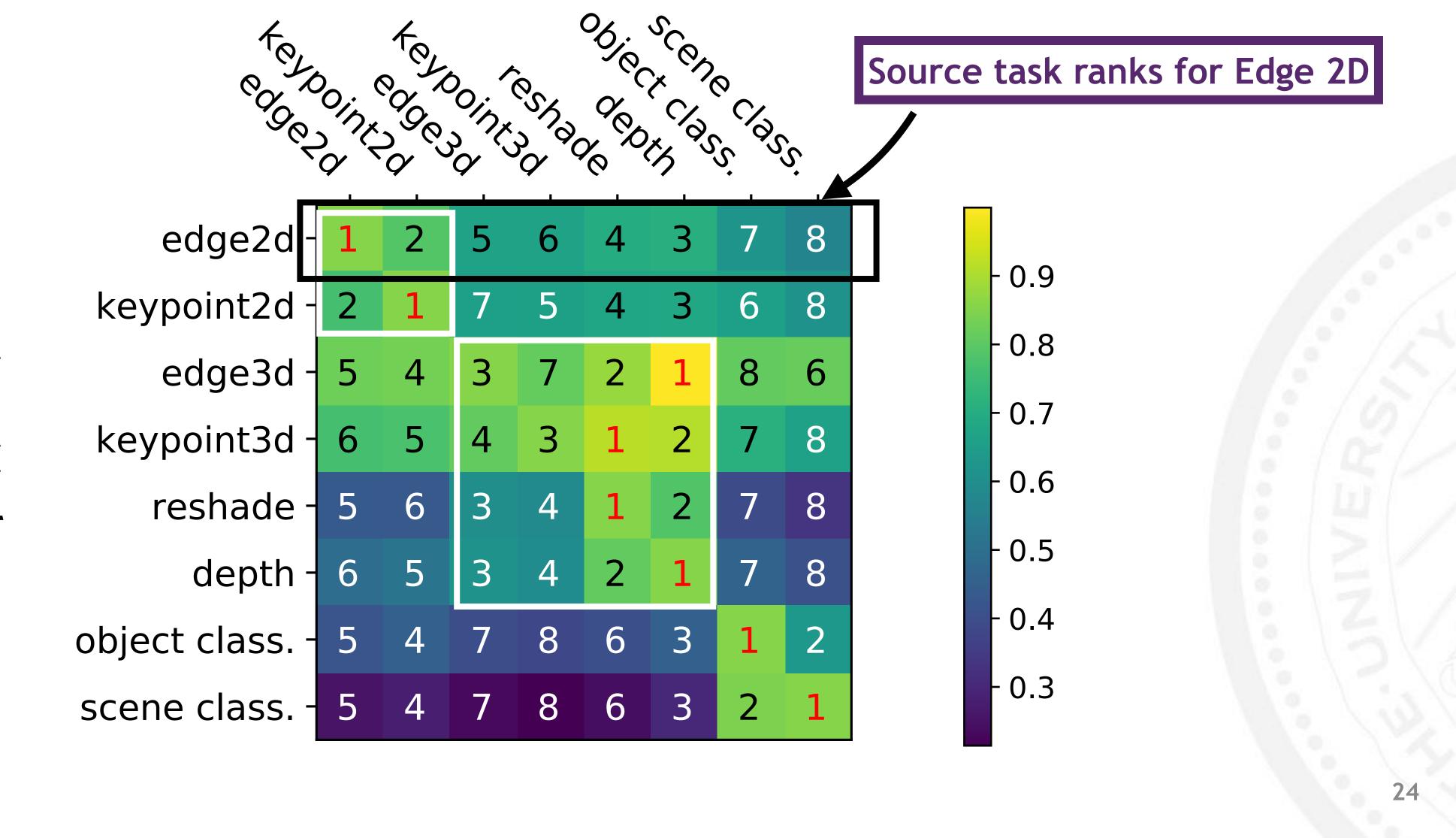




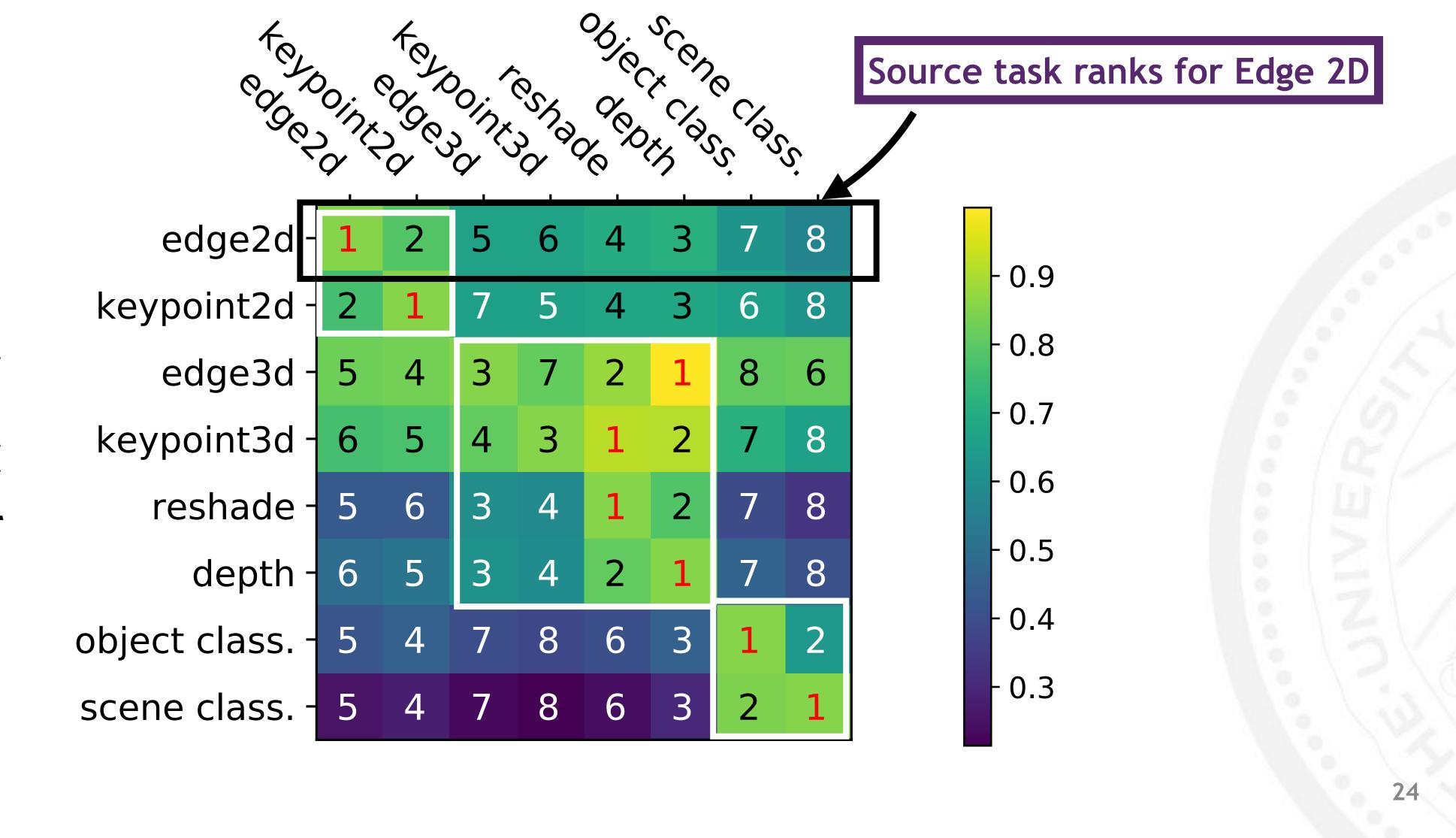
target task



target task



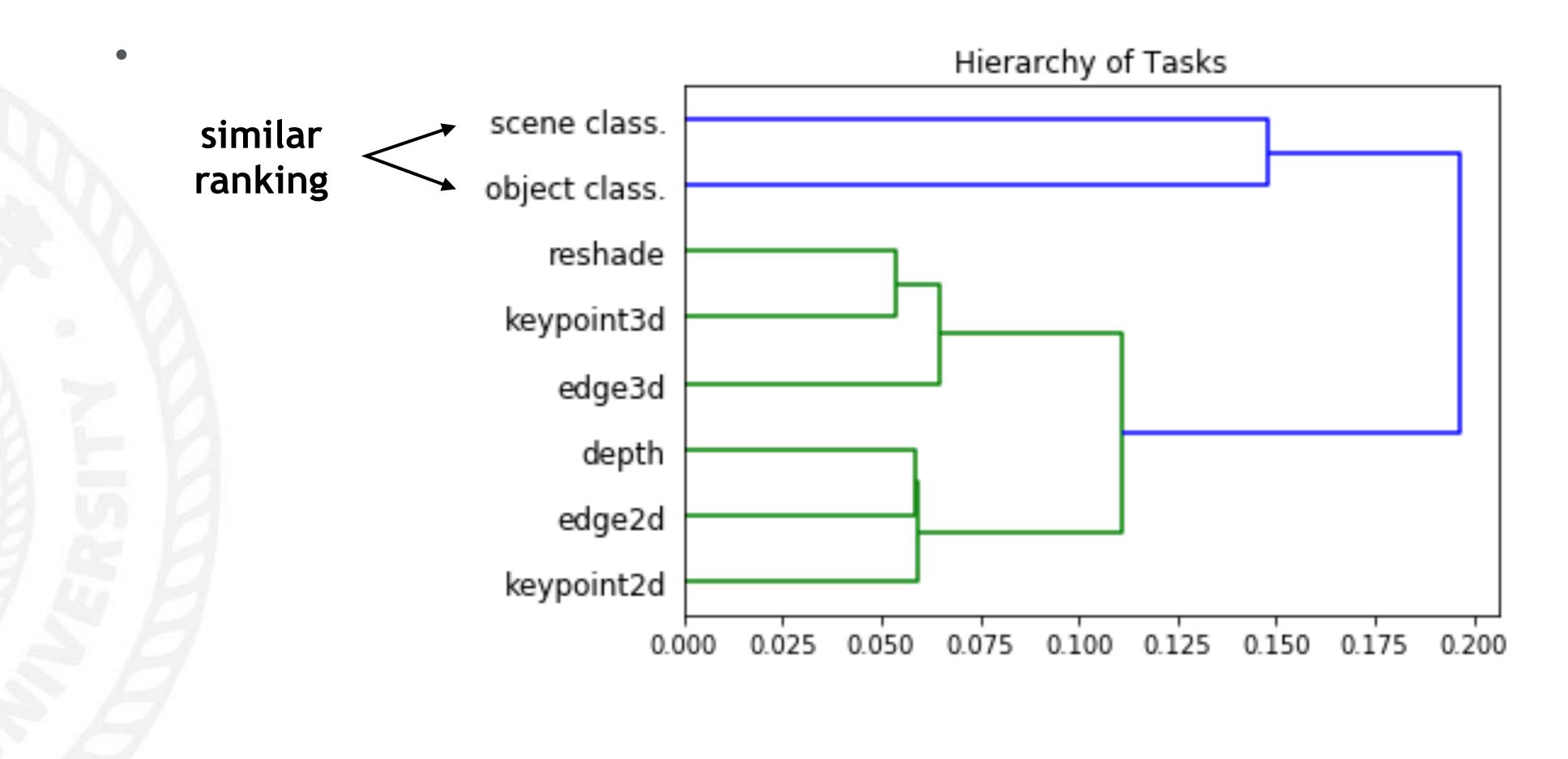
target task



target task

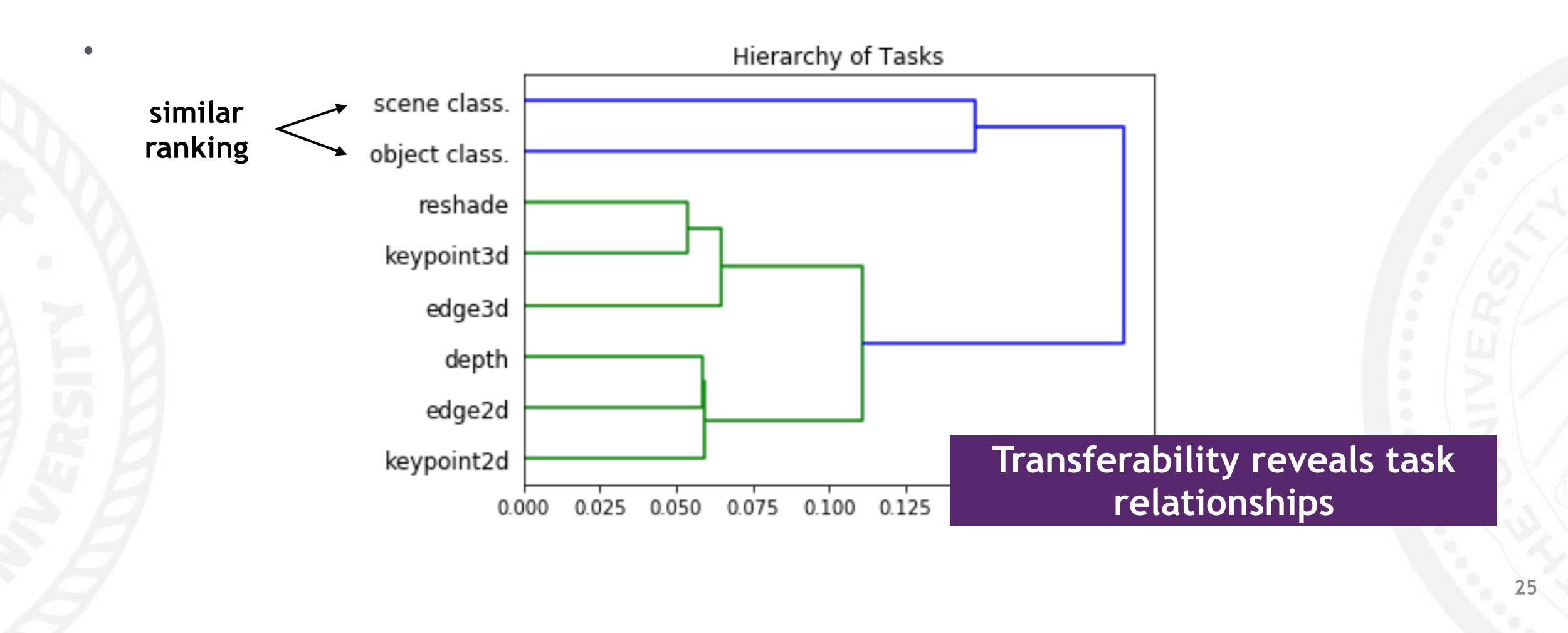
Task Relationships

Cluster the source task transferability scores for each target task.



Task Relationships

Cluster the source task transferability scores for each target task.



Comparison with Task Affinity

Reference metric: task affinity, an emp transferability score (Amir et al. 2018)

• Ranking results agrees mostly on the top three rankings for each task

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

0.4

- 0.3

•	•		
)]	r 1	60	l

	Spearman	DCG
edge2d	0.381	1.000
keypoint2d	0.357	1.000
edge3d	0.429	0.851
keypoint3d	0.786	0.765
reshade	0.810	0.998
depth	0.738	0.996
object class.	0.214	0.976
scene class.	0.286	0.981

Rank Comparison

Comparison with Task Affinity

Reference metric: task affinity, an emp transferability score (Amir et al. 2018)

• Ranking results agrees mostly on the three rankings for each task

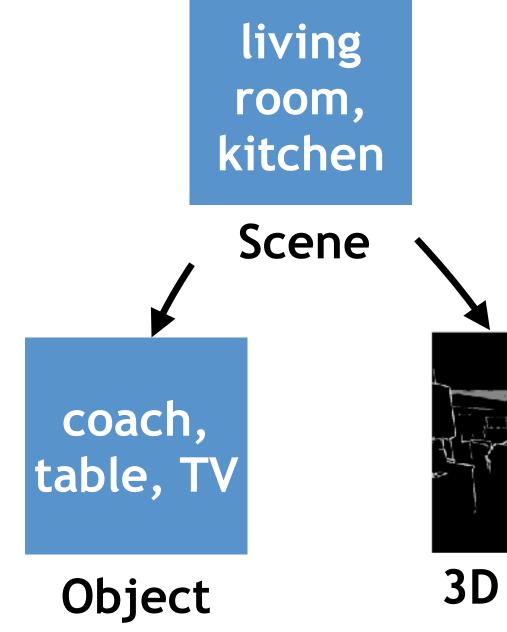
Advantage of our approach:

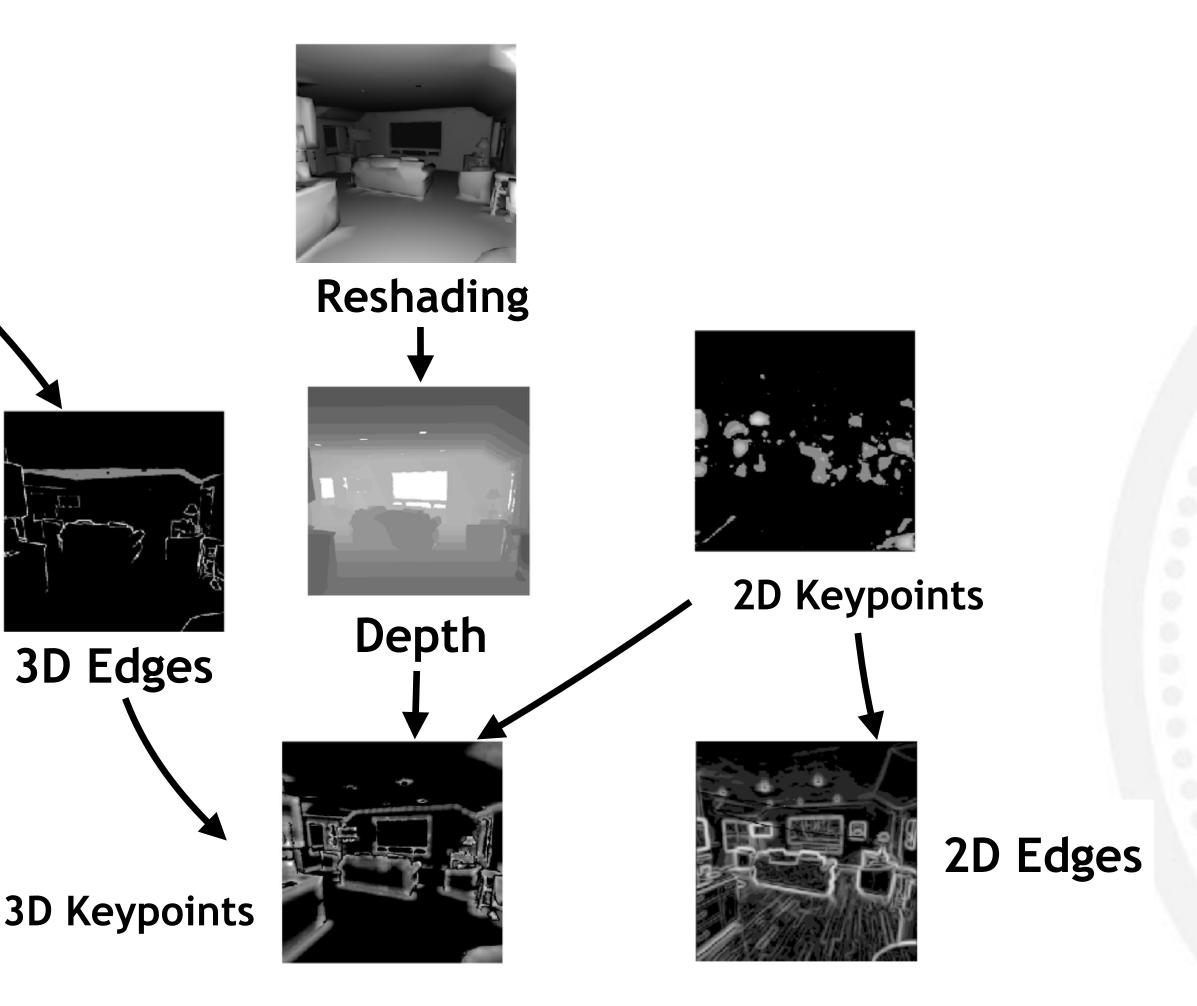
- Efficiency: five times more efficient than Affinity •
- Clear operational meaning based on statistics & information theory

TINITY						
		Spearman	DCG			
oirical	edge2d	0.381	1.000	- 0.9		
Jincat	keypoint2d	0.357	1.000	- 0.8		
	edge3d	0.429	0.851			
top	keypoint3d	0.786	0.765	- 0.7		
υp	reshade	0.810	0.998	- 0.6		
	depth	0.738	0.996	- 0.5		
	object class.	0.214	0.976	- 0.4		
	scene class.	0.286	0.981	- 0.3		
Rank Comparison						

Transferability

A minimum-spanning tree approach to design transfer curriculum





Outline

Intro: Shared Representation & Maximal Correlation

Estimating Task Transferability in Task Transfer Learning

Multi-view learning

Conclusion

Multi-View Learning

Exploits shared knowledge among of subsets

Sample Instance

Exploits shared knowledge among different data sources or different feature

Multi-View Learning

Exploits shared knowledge among of subsets

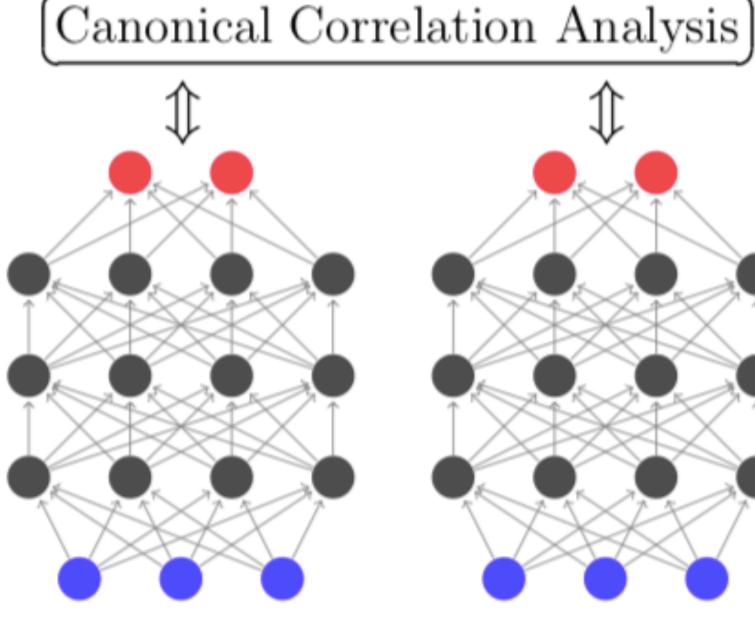
Sample Instance

Correlation-based approaches: a natural way to capture the shared information between views

Exploits shared knowledge among different data sources or different feature

Correlation-Based Approaches

CCA and Kernalized CCA: shallow modes Deep CCA (DCCA) [Andrew et. al. 2013] Deep CCA Auto Encoder (DCCAE) [Wang et. al 2016]



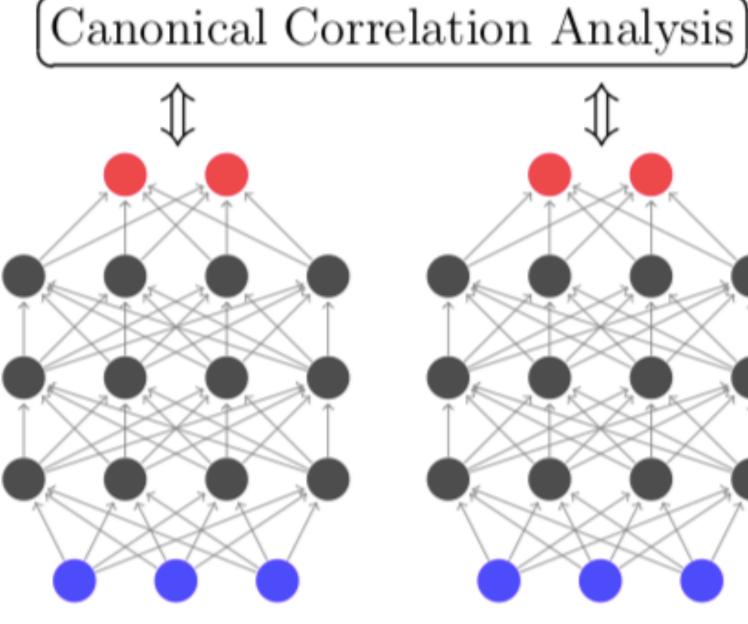
View 1

View 2

Correlation-Based Approaches

CCA and Kernalized CCA: shallow modes Deep CCA (DCCA) [Andrew et. al. 2013] Deep CCA Auto Encoder (DCCAE) [Wang et. al 2016]

- Limitations:
 - Numerical issues (whitening based on matrix inverse)
 - Feature dimension is limited

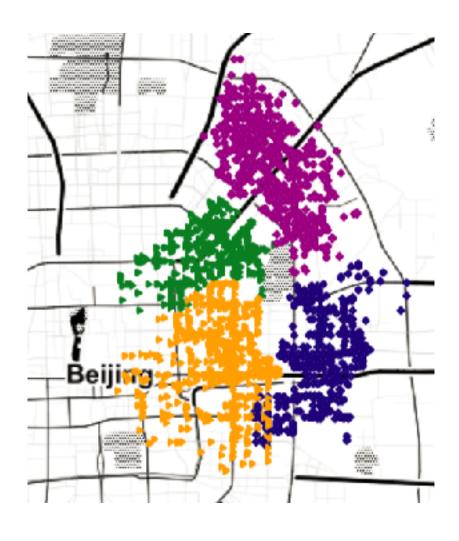


View 2

Multi-View Learning using Maximal HGR Correlation

Unsupervised task: multi-view mobility pattern extraction

Supervised task: mutli-modal emotion recognition



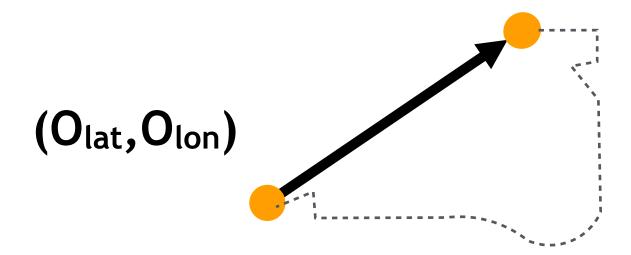
(1)

Mobility Pattern Mining

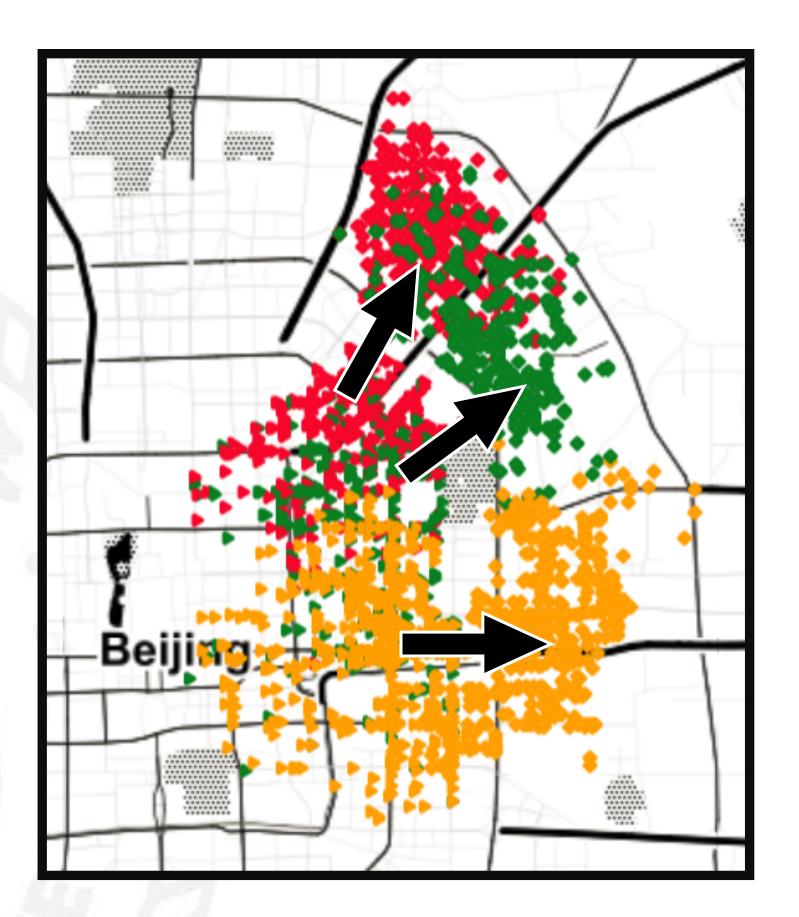
New York Taxi Trip Records, 17:00 – 18:00, 2015 May 11th – May 15th

Mobility pattern: Common Repeated Travel Demand among a Population

Learn from trip (origin, destination) data (D_{lat}, D_{lon})



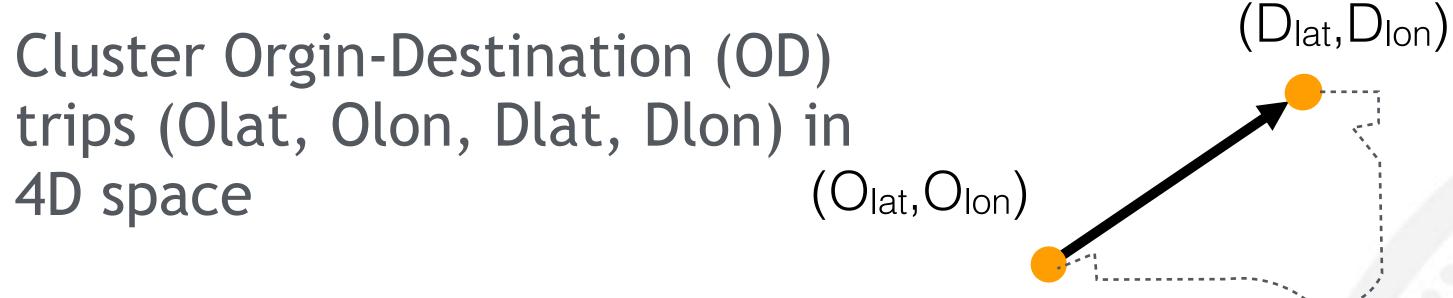
Single-View Approaches



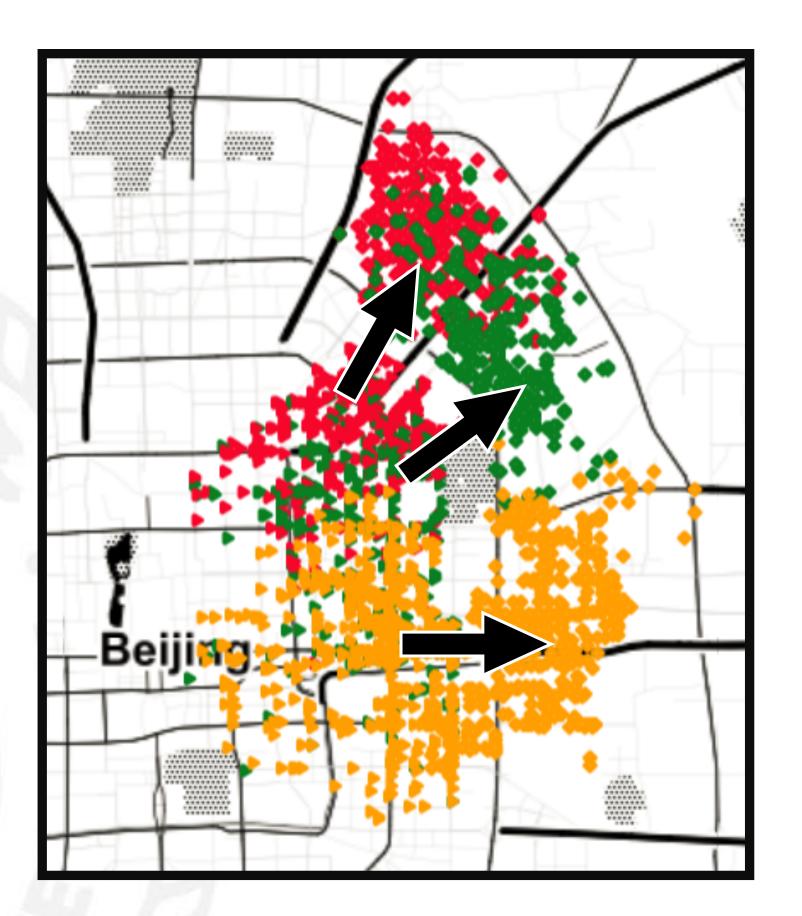
K-Means & DBSCAN

4D space

Projecting to 2D space causes spatial overlap

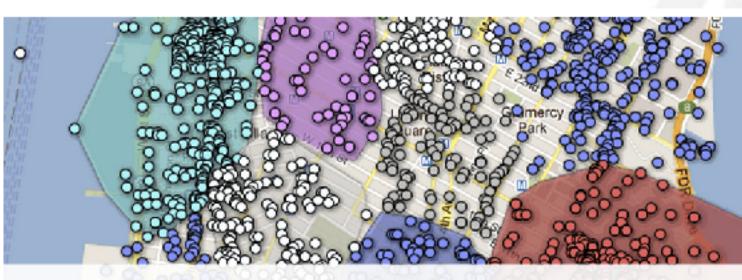


Single-View Approaches



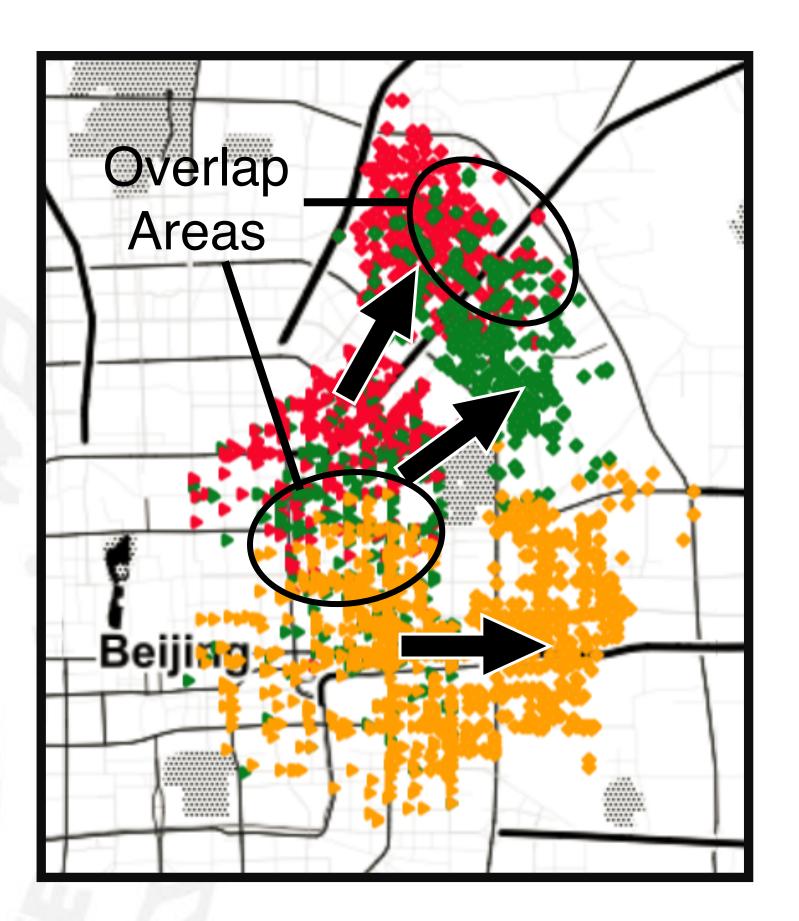
K-Means & DBSCAN

- (D_{lat}, D_{lon}) Cluster Orgin-Destination (OD) trips (Olat, Olon, Dlat, Dlon) in (O_{lat}, O_{lon}) 4D space
- Projecting to 2D space causes spatial overlap
- City & Traffic Planning
- Define traffic dynamic by regions
- Ambiguities for overlapped regions



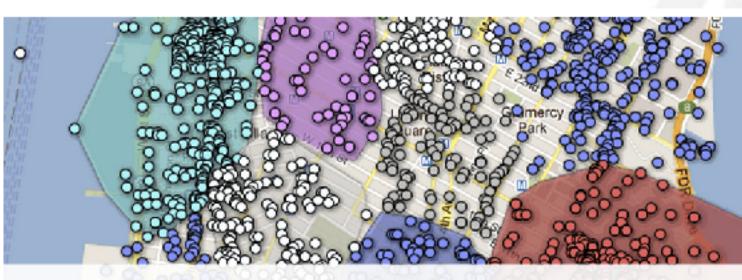
Livehoods — A new way to understand a city

Single-View Approaches



K-Means & DBSCAN

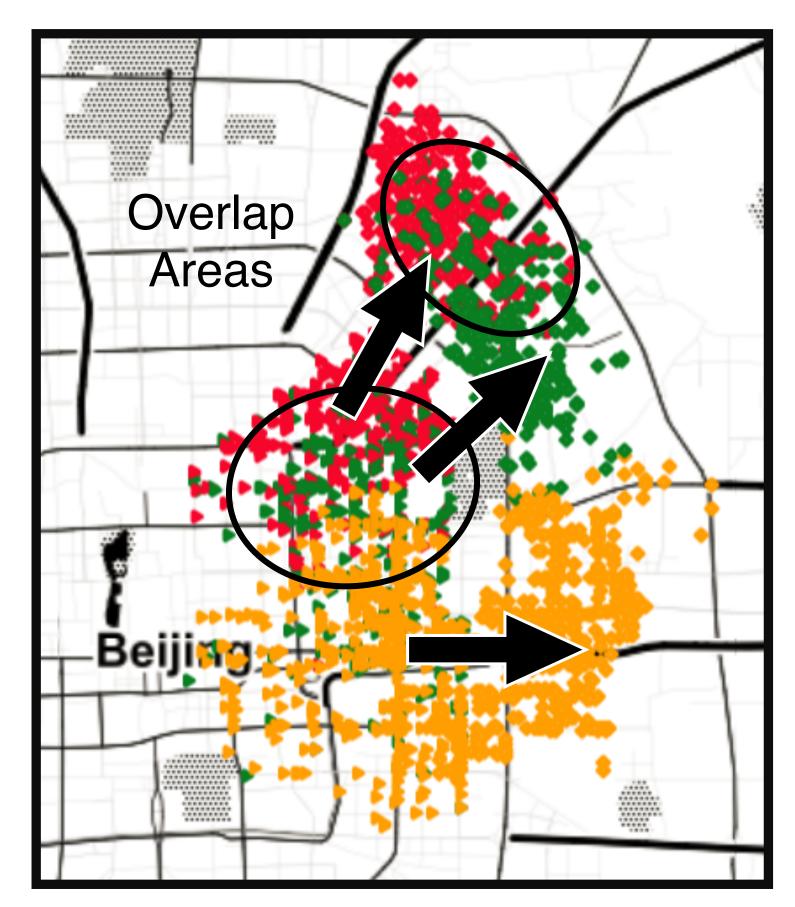
- (D_{lat}, D_{lon}) Cluster Orgin-Destination (OD) trips (Olat, Olon, Dlat, Dlon) in (O_{lat}, O_{lon}) 4D space
- Projecting to 2D space causes spatial overlap
- City & Traffic Planning
- Define traffic dynamic by regions
- Ambiguities for overlapped regions



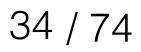
Livehoods — A new way to understand a city

Multi-view learning of mobility features

Traditional Approach

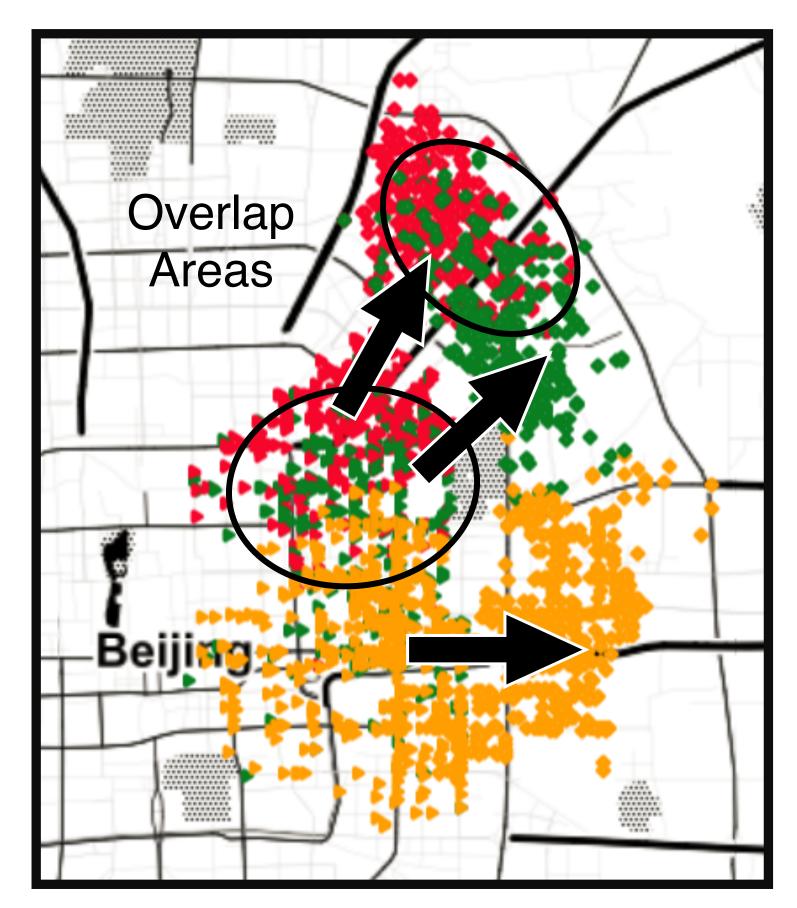


[Lian et. al. 2019]



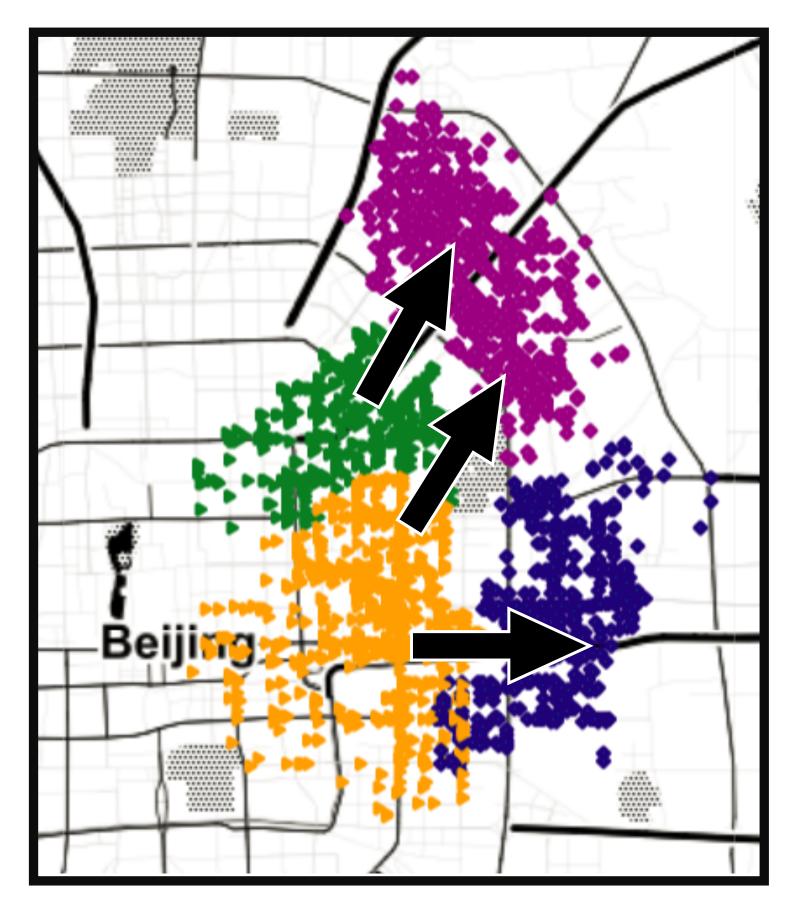
Multi-view learning of mobility features

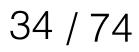
Traditional Approach



Learn features for Origin view and Destination view

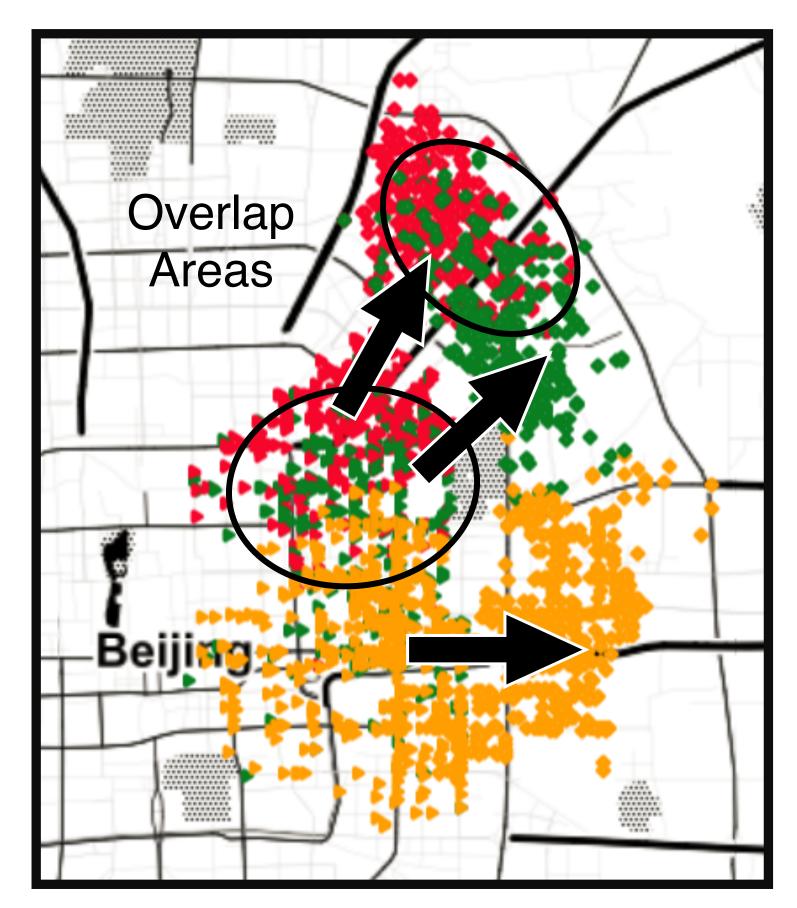
Our Approach [Lian et. al. 2019]





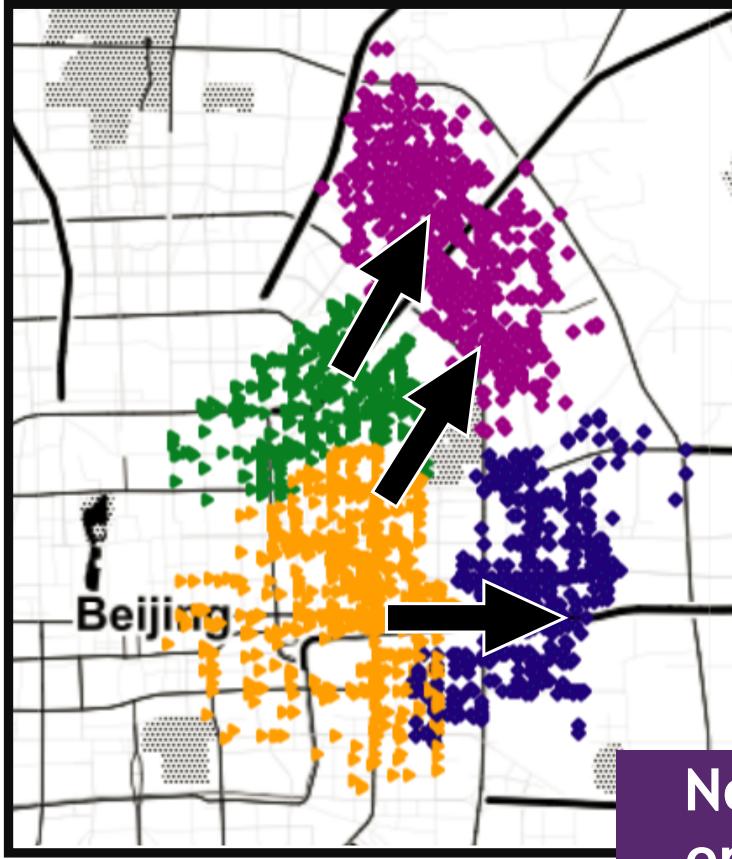
Multi-view learning of mobility features

Traditional Approach



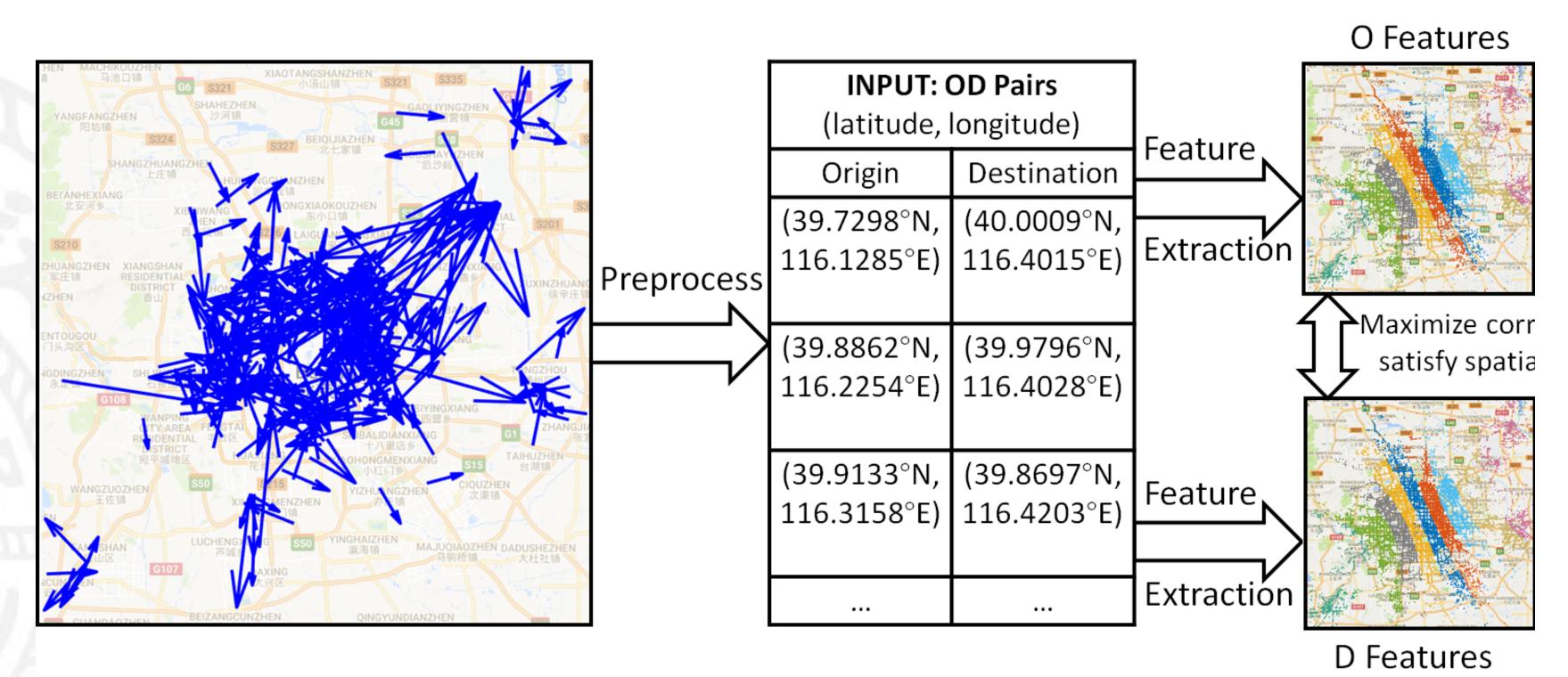
Learn features for Origin view and Destination view

Our Approach [Lian et. al. 2019]



No overlap among origin/destination regions

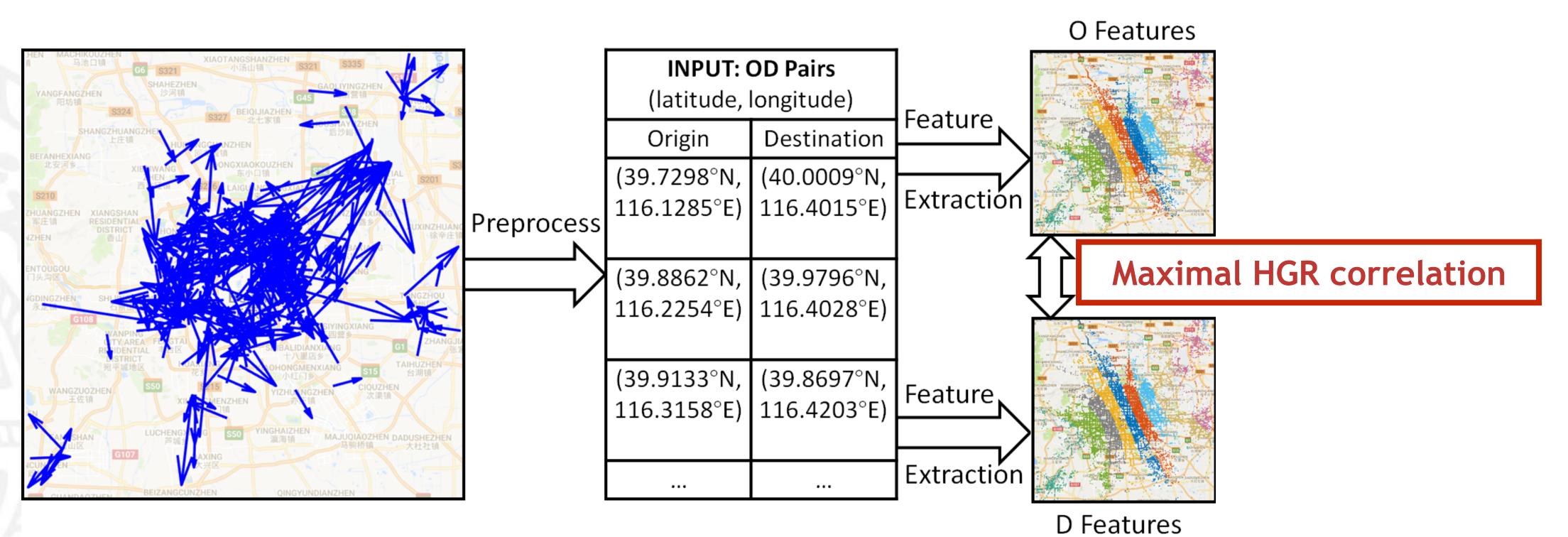
System Architecture: KACE



destination view

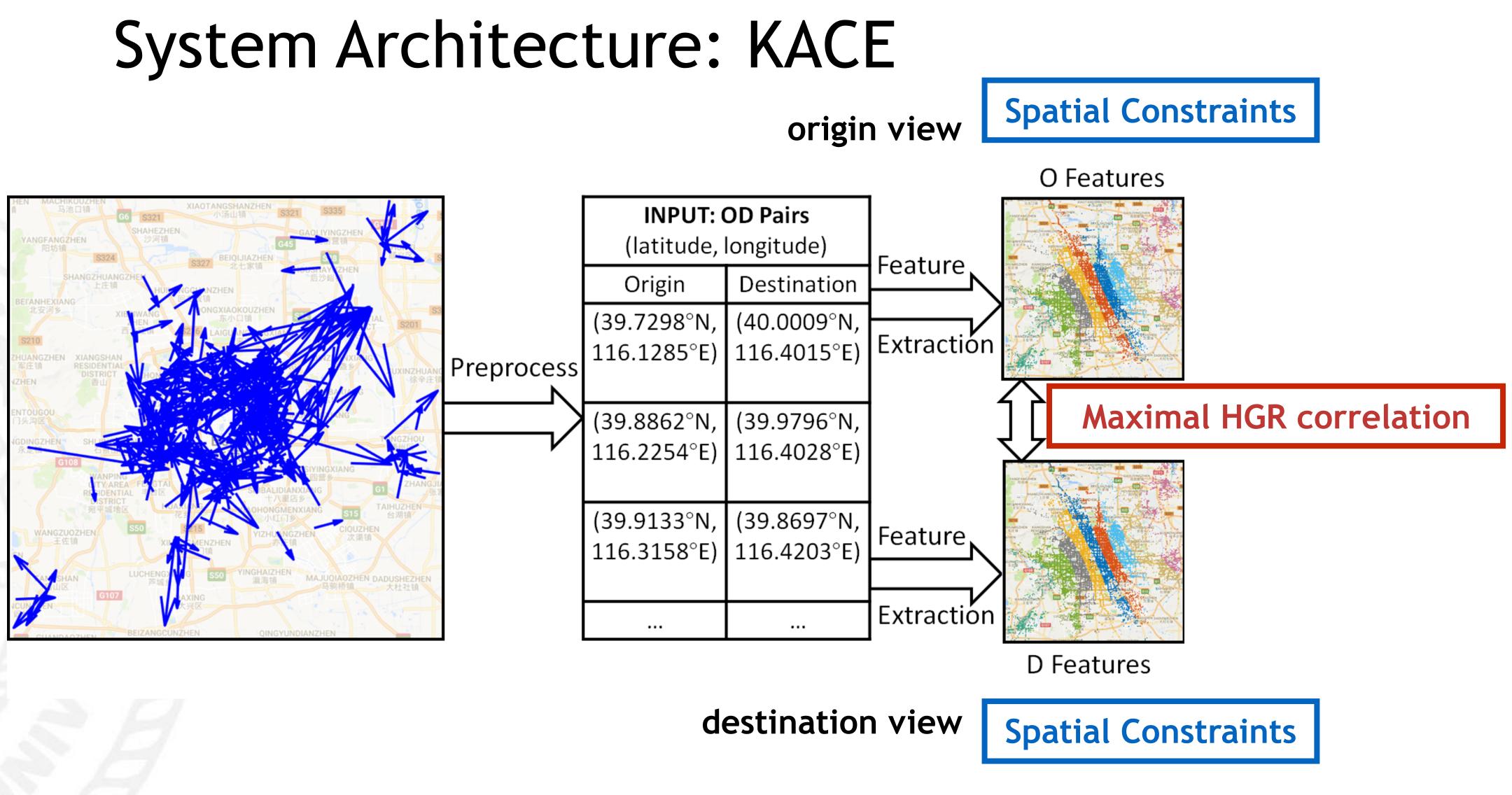
origin view

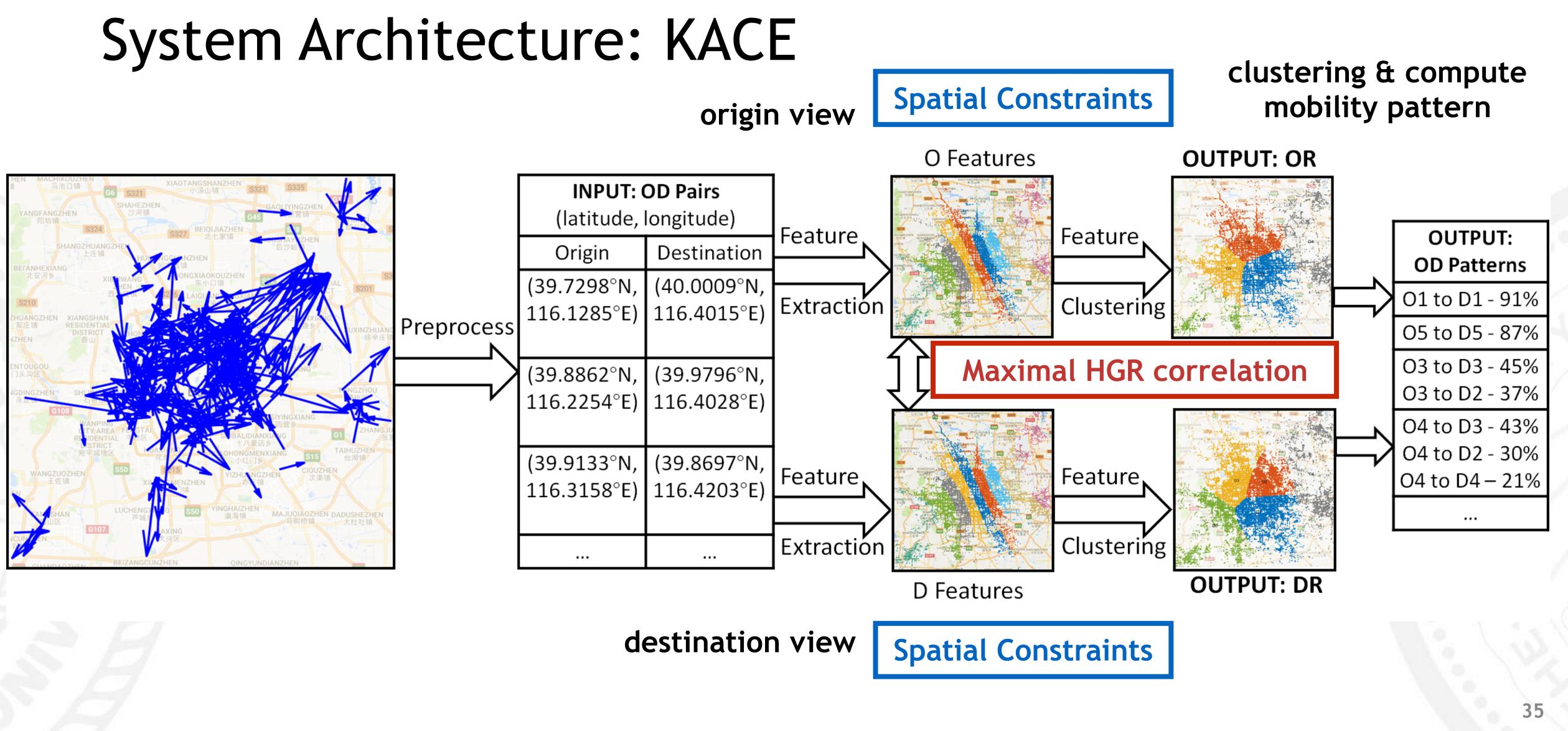
System Architecture: KACE



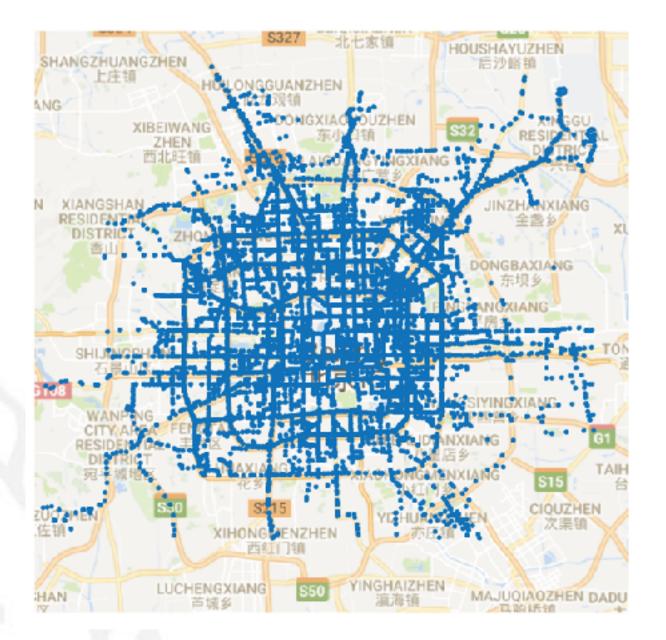
destination view

origin view





Experiment Data



Weekdays' data in Nov. 2015

Beijing: Extract OD pairs from taxi trajectories

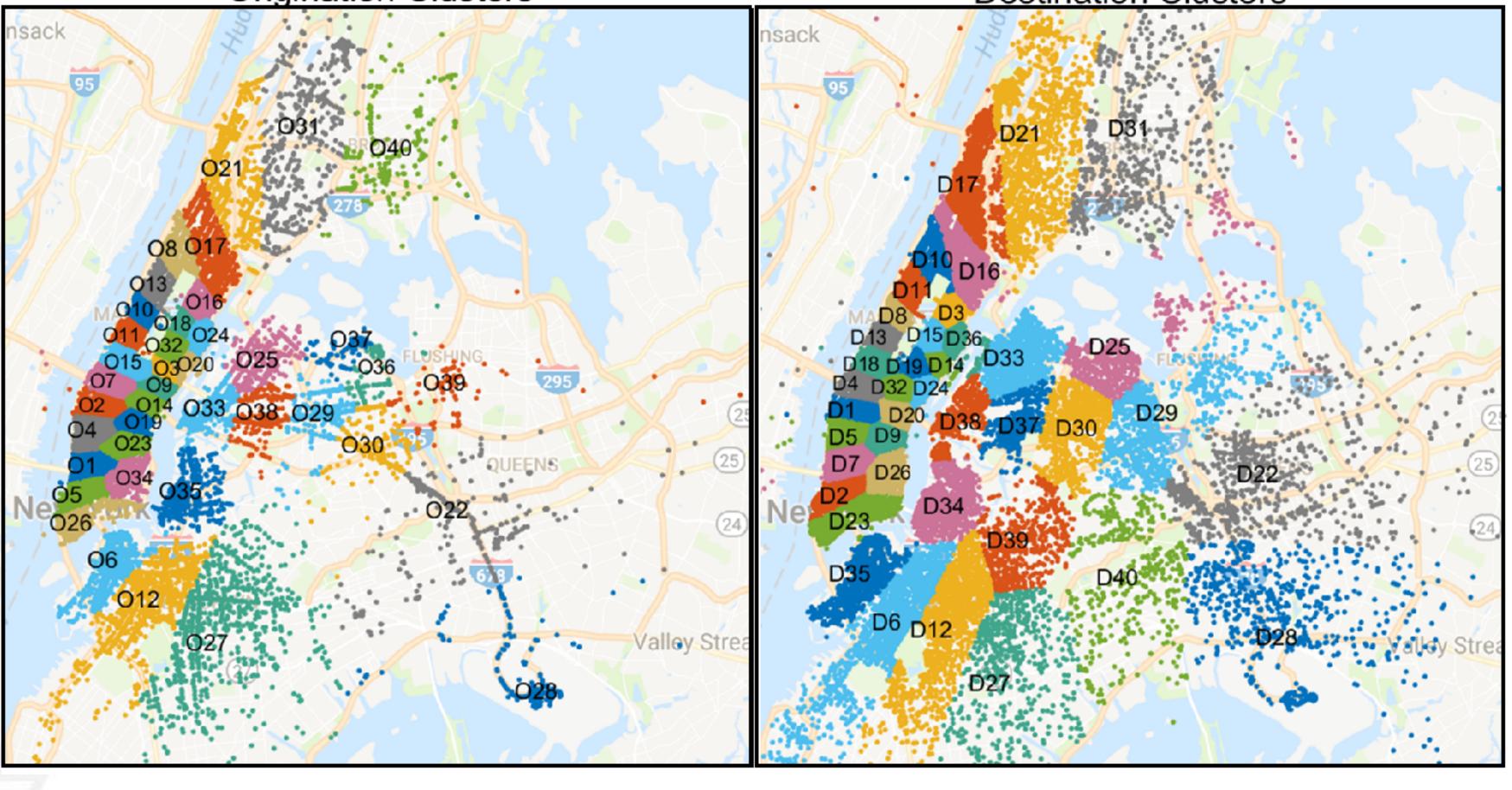
NYC: Open data published by NYC TLC

		Beijing	NYC
17:00-17:59	Total Trip Number Average OD Distance (km) OD Filtered Trip Number	118433 3.63 54199	213175 2.95 127648
7:00-7:59	Total Trip Number Average OD Distance (km) OD Filtered Trip Number	116817 4.71 65330	208336 3.38 137140

NYC Results

Recovers the block city topology of Manhattan

Origination Clusters

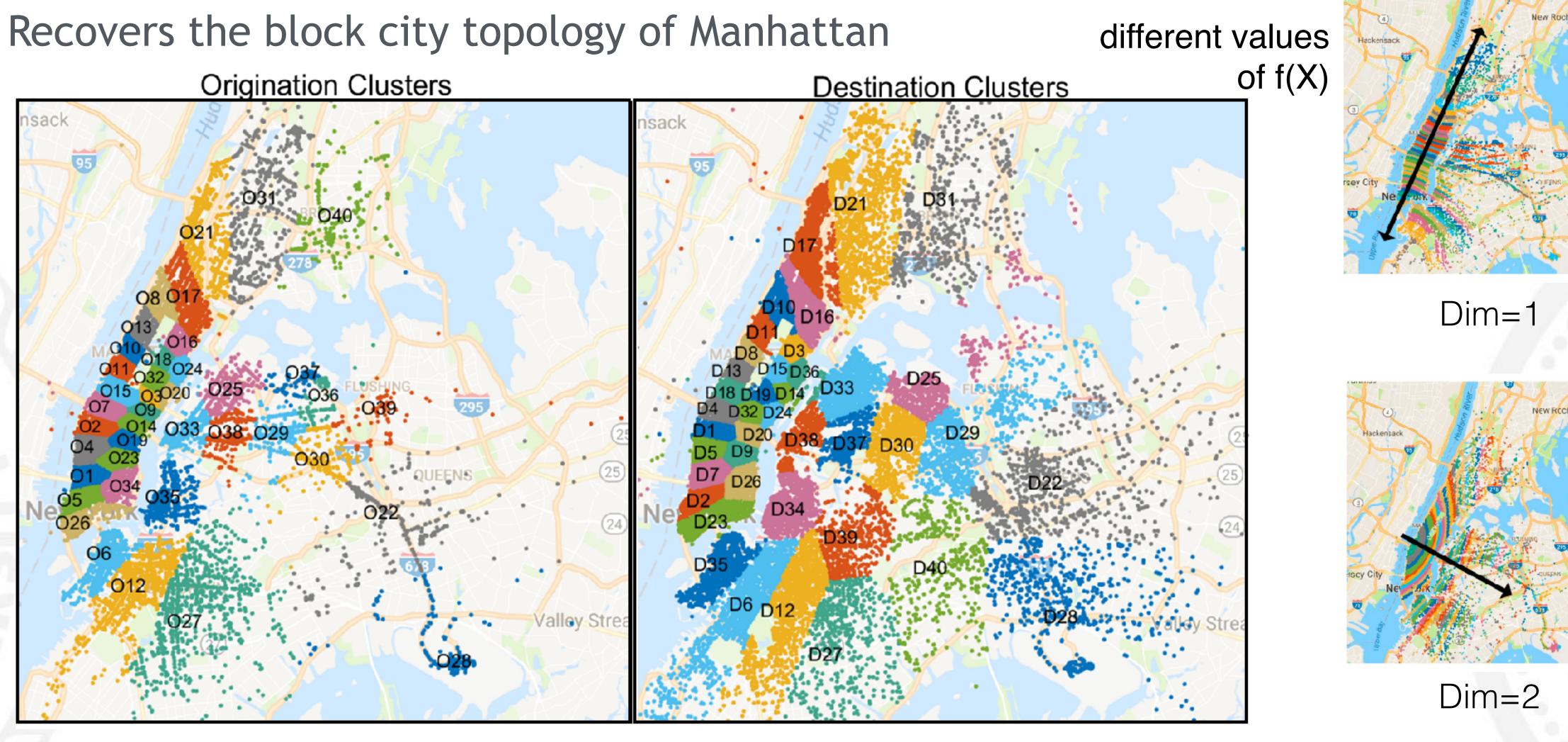


Patterns with $P_{D|0} \sim 0.5$

Destination Clusters

O31 to D21-48.59%/ to D31-28.08%

NYC Results

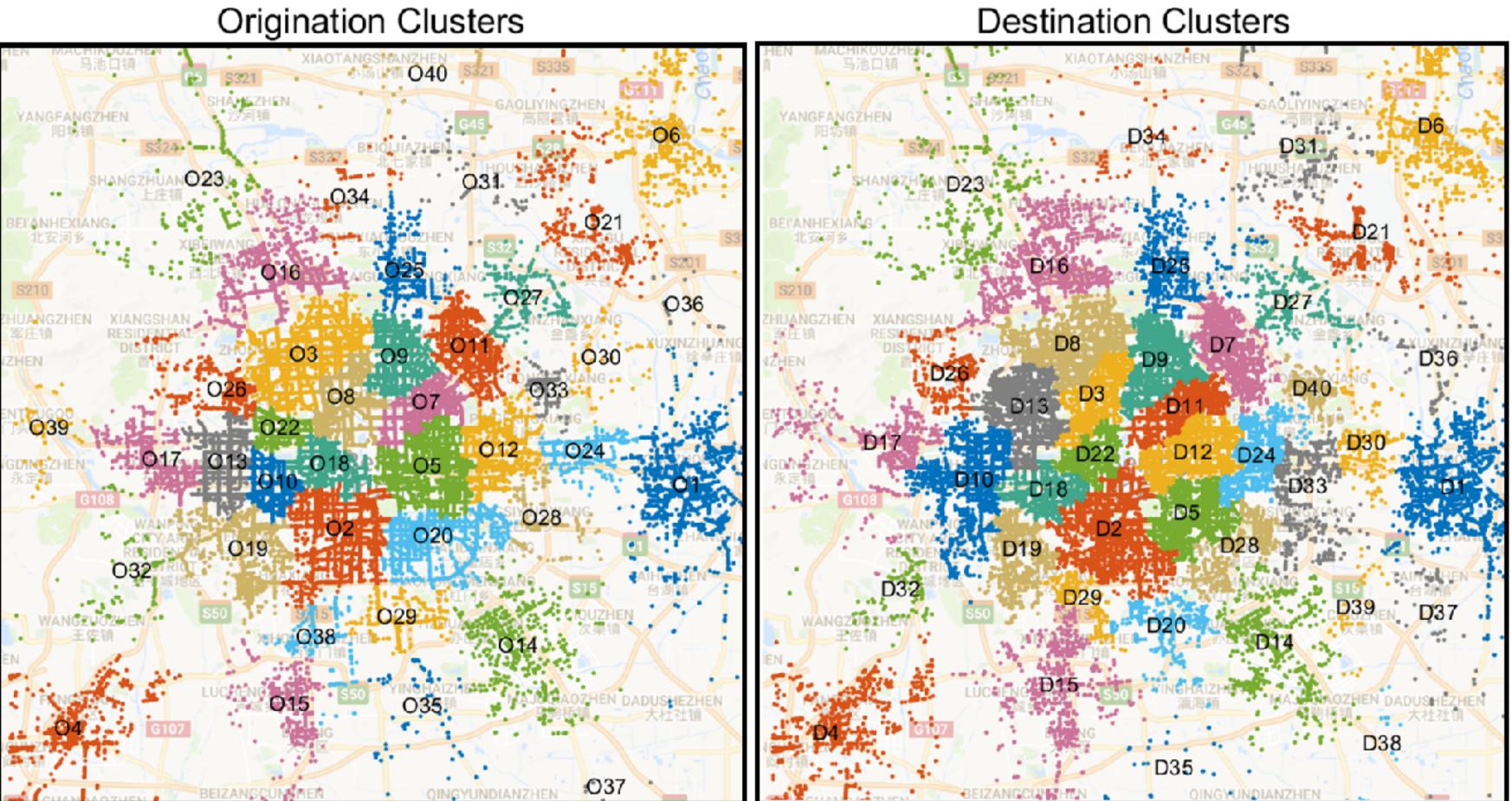


Patterns with $P_{D|O} \sim 0.5$

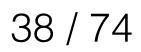
O31 to D21-48.59%/ to D31-28.08%

Beijing Results

• Recovers the ring-like city topology of Beijing

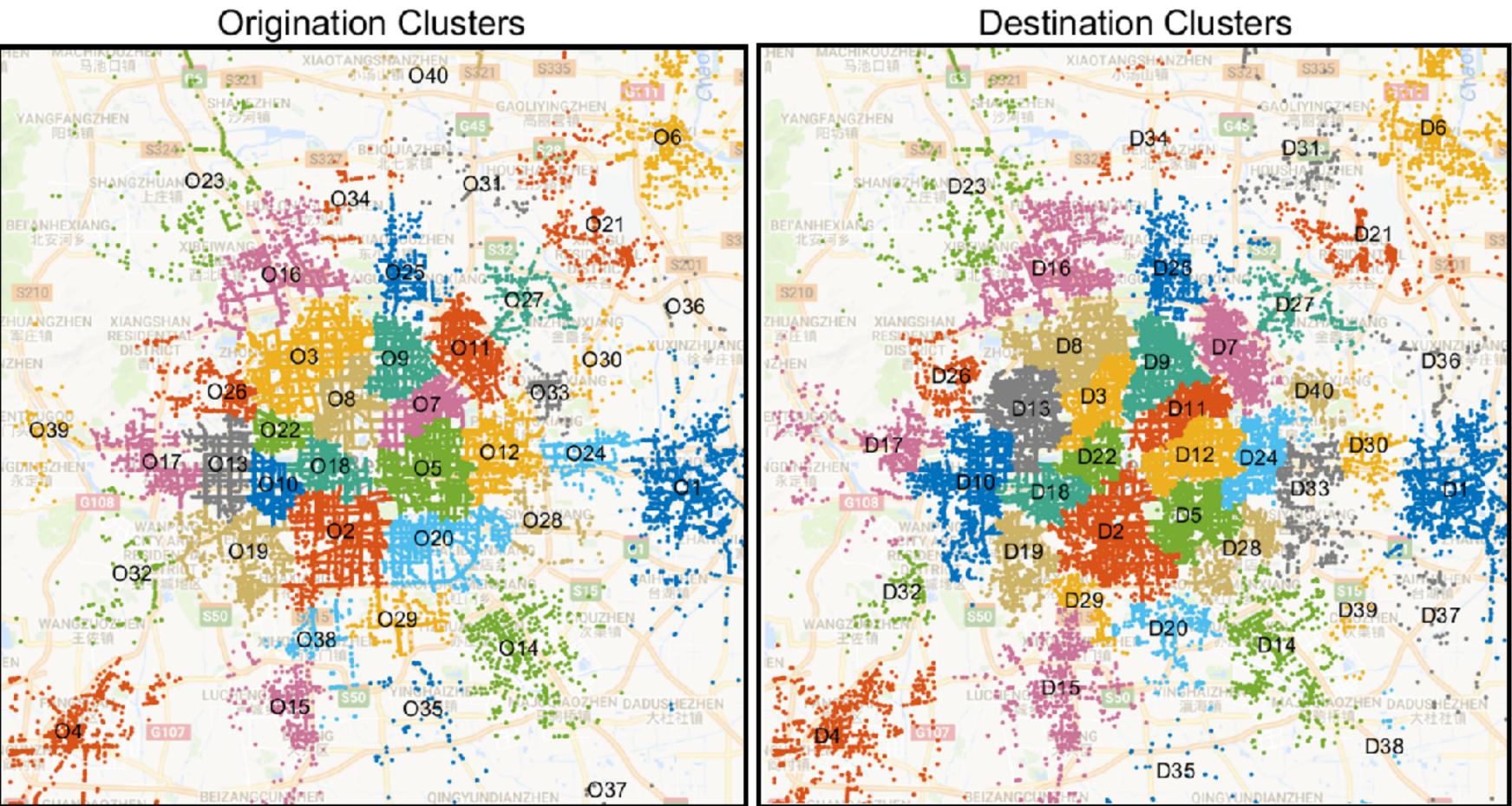


Destination Clusters



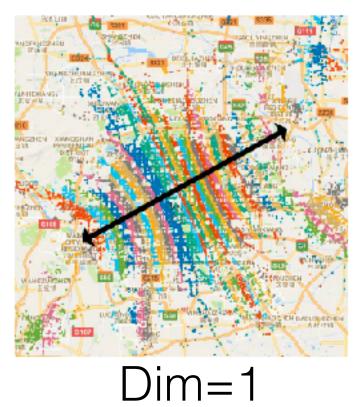
Beijing Results

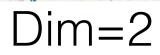
• Recovers the ring-like city topology of Beijing

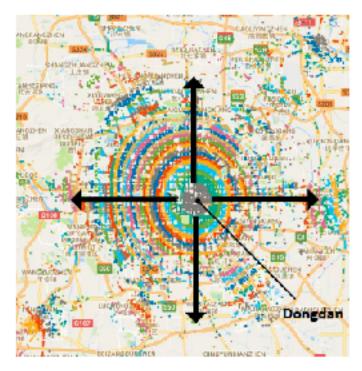


different values of f(X)

Destination Clusters

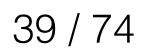






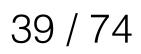
Dim=3

Methods	Spatial Coverage	Average Origin in-cluster Distance	Average Destination in-cluster Distance	<u> </u>	Origin Overlap	Destination Overlap
KACE	100%	2.98km	3.21km	0.8643	0.33%	0.22%
MLAN	100%	11.82km	12.58km	1	4.43%	4.19%
CCA	100%	4.38km	4.78km	0.8480	0.34%	0.22%
KCCA	100%	4.99km	6.12km	0.8576	0.32%	0.35%
K-Means++	100%	4.26km	4.42km	1	54.26%	50.75%
DBSCAN	25.75%	0.60km	0.63km	1	39.21%	35.85%



Methods	Spatial Coverage	Average Origin in-cluster Distance	Average Destination in-cluster Distance	<i>.</i>	Origin Overlap	Destination Overlap
KACE	100%	2.98km	3.21km	0.8643	0.33%	0.22%
MLAN	100%	11.82km	12.58km	1	4.43%	4.19%
CCA	100%	4.38km	4.78km	0.8480	0.34%	0.22%
KCCA	100%	4.99km	6.12km	0.8576	0.32%	0.35%
K-Means++	100%	4.26km	4.42km	1	54.26%	50.75%
DBSCAN	25.75%	0.60km	0.63km	1	39.21%	35.85%

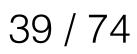
• Traditional methods by clustering trips, has big overlap.



Methods	Spatial Coverage	Average Origin in-cluster Distance	Average Destination in-cluster Distance	Regional Correlation	Origin Overlap	Destination Overlap
KACE	100%	2.98km	3.21km	0.8643	0.33%	0.22%
MLAN	100%	11.82km	12.58km	1	4.43%	4.19%
CCA	100%	4.38km	4.78km	0.8480	0.34%	0.22%
KCCA	100%	4.99km	6.12km	0.8576	0.32%	0.35%
K-Means++	100%	4.26km	4.42km	1	54.26%	50.75%
DBSCAN	25.75%	0.60km	0.63km	1	39.21%	35.85%

- Traditional methods by clustering trips, has big overlap.
- clusters

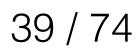
• Multi-view clustering MLAN, CCA-based methods results in less compact



Methods	Spatial Coverage	Average Origin in-cluster Distance	Average Destination in-cluster Distance		0	Destination Overlap
KACE	100%	2.98km	3.21km	0.8643	0.33%	0.22%
MLAN	100%	11.82km	12.58km	1	4.43%	4.19%
CCA	100%	4.38km	4.78km	0.8480	0.34%	0.22%
KCCA	100%	4.99km	6.12km	0.8576	0.32%	0.35%
K-Means++	100%	4.26km	4.42km	1	54.26%	50.75%
DBSCAN	25.75%	0.60km	0.63km	1	39.21%	35.85%

- Traditional methods by clustering trips, has big overlap.
- clusters
- Our method, KACE has the best overall performance

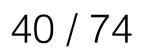
• Multi-view clustering MLAN, CCA-based methods results in less compact



Comparison with Canonical Correlation

Evaluate extracted features:

	Correlation		Validity		K	Kurtosis (f)		'"tailedness" of a distribution	
	D1	D2	D3	f	g	f_1	f_2	f_3	-
KACE	0.85	0.82	0.76	0.95	0.95	2.39	1.99	7.79	
CCA	0.87	0.82	/	0.98	0.98	5.03	3.54	/	
KCCA	0.88	0.84	0.84	0.89	0.89	5.64	3.97	14.59	

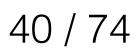


Comparison with Canonical Correlation

Evaluate extracted features:

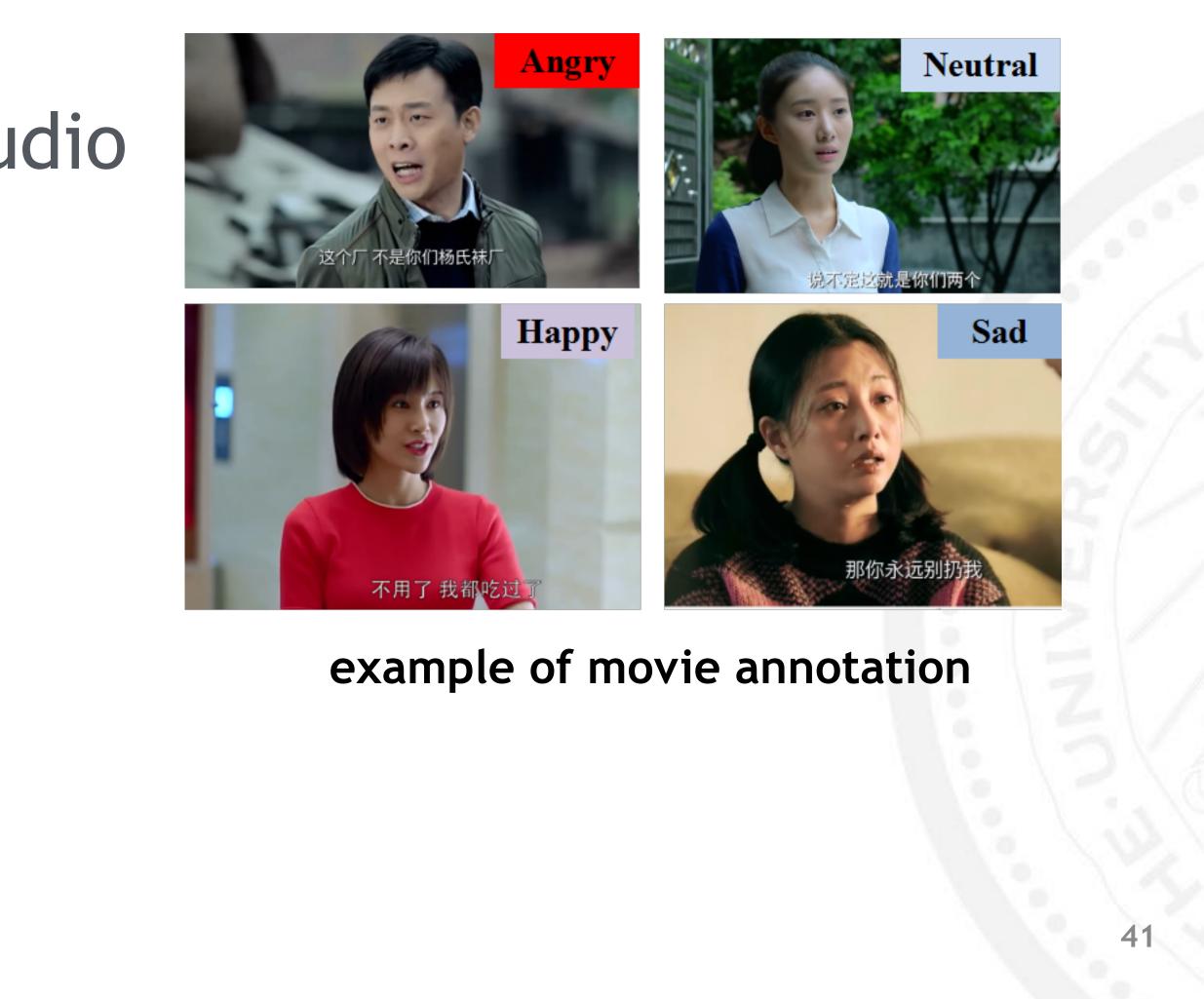
	Correlation		Validity		K	Kurtosis (f)		'"tailedness" of a distribution	
	D1	D2	D3	f	g	f_1	f_2	f_3	
KACE	0.85	0.82	0.76	0.95	0.95	2.39	1.99	7.79	
CCA	0.87	0.82	/	0.98	0.98	5.03	3.54	/	
KCCA	0.88	0.84	0.84	0.89	0.89	5.64	3.97	14.59	

KACE features have much smaller Kurtosis than CCA/KCCA



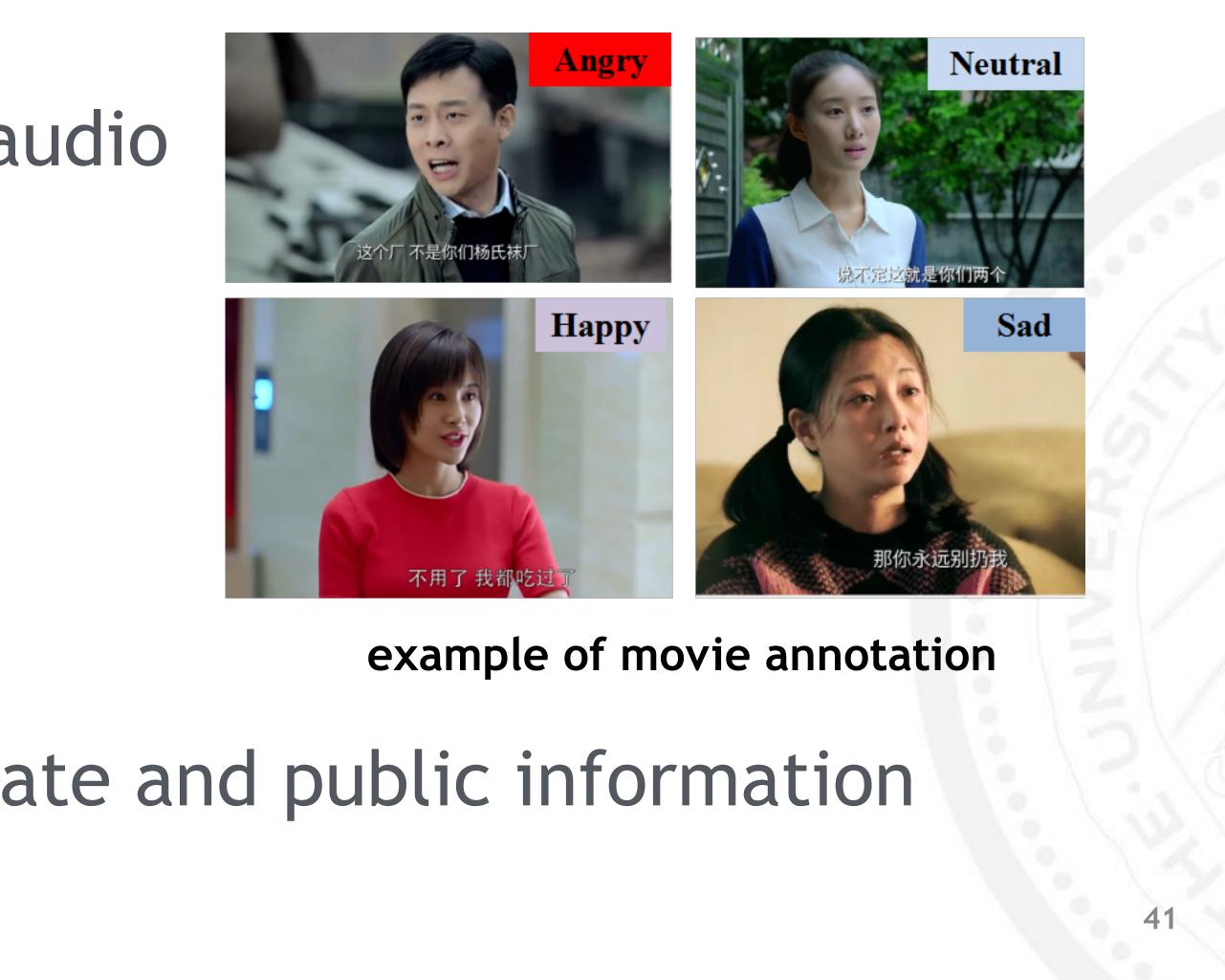
Application II: Multi-Modal Emotion Recognition [Ma et. al. 2019]

Goal: classify emotion from audio and visual data important for machine-based understanding

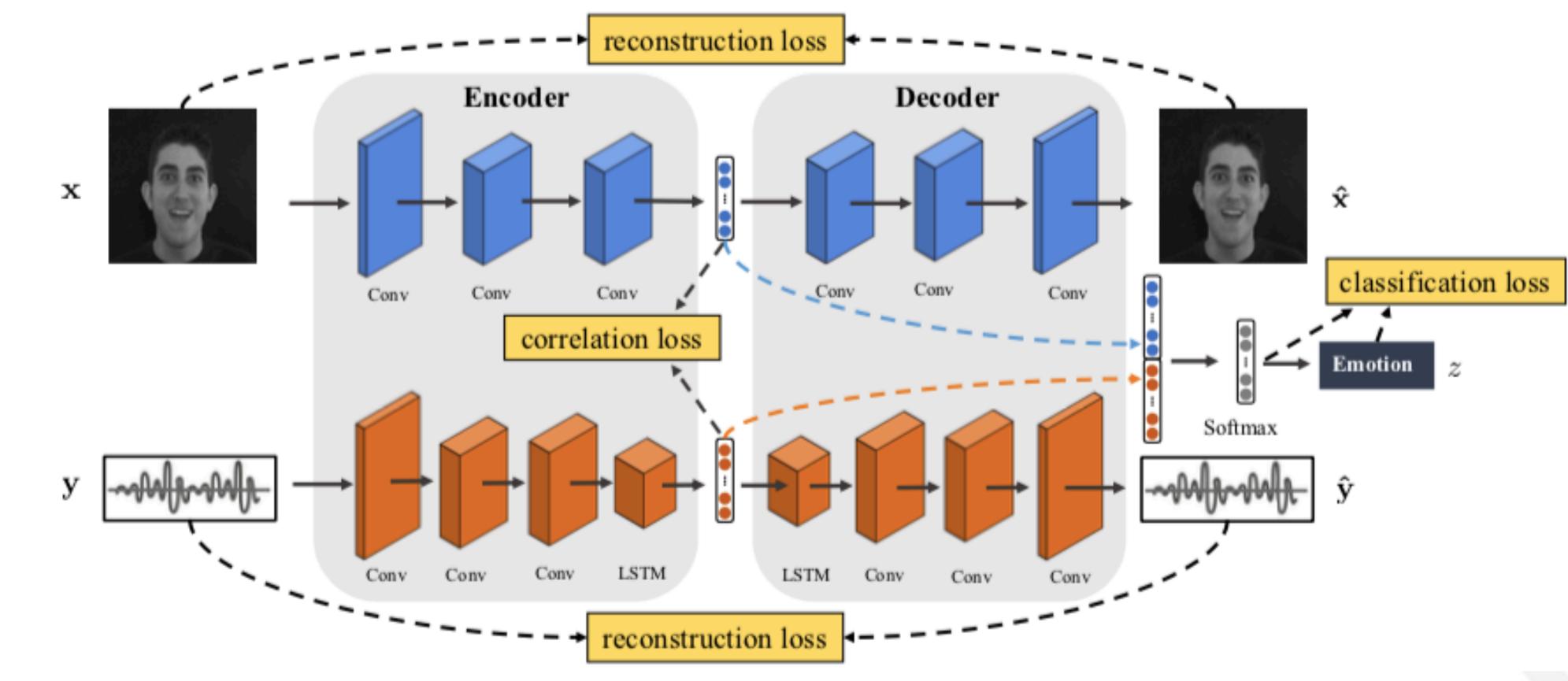


Application II: Multi-Modal Emotion Recognition [Ma et. al. 2019]

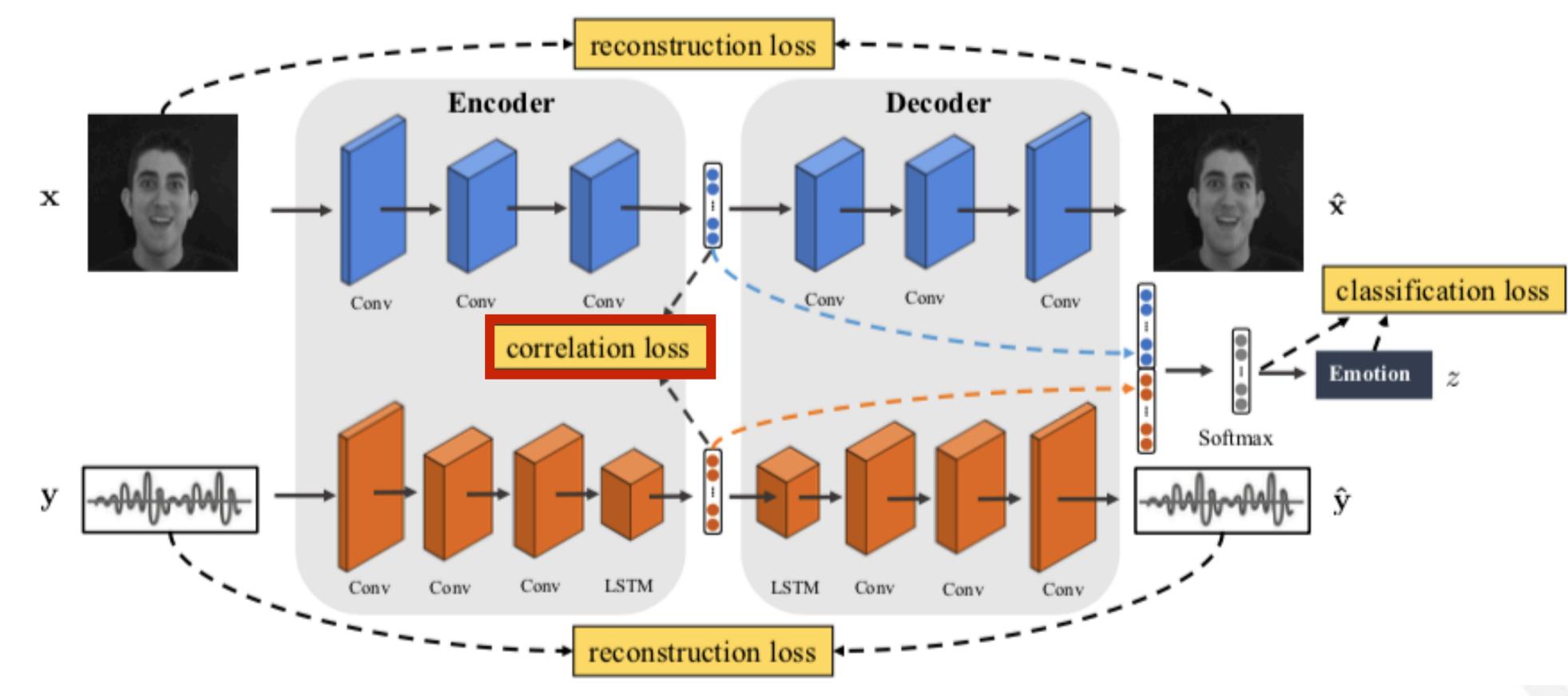
Goal: classify emotion from audio and visual data important for machine-based understanding



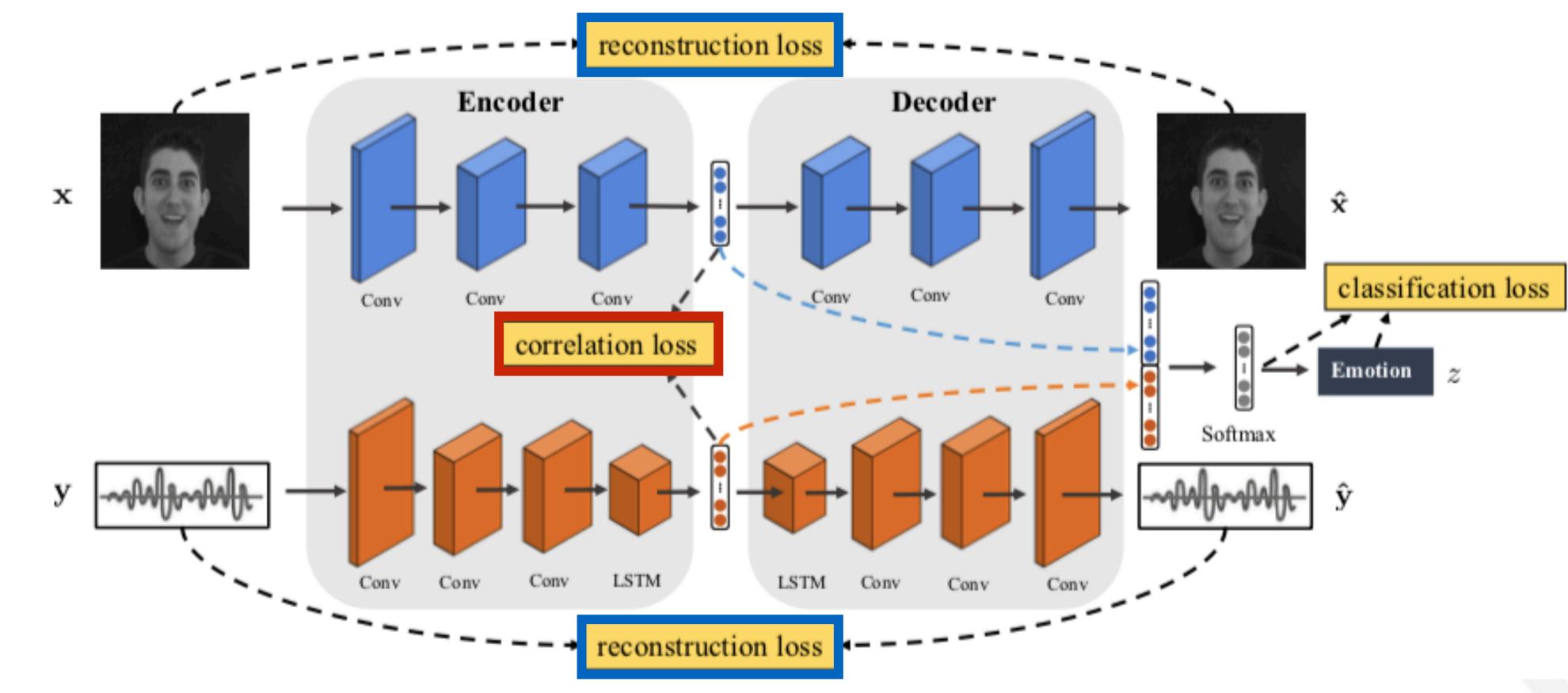
Challenge: disentangling private and public information



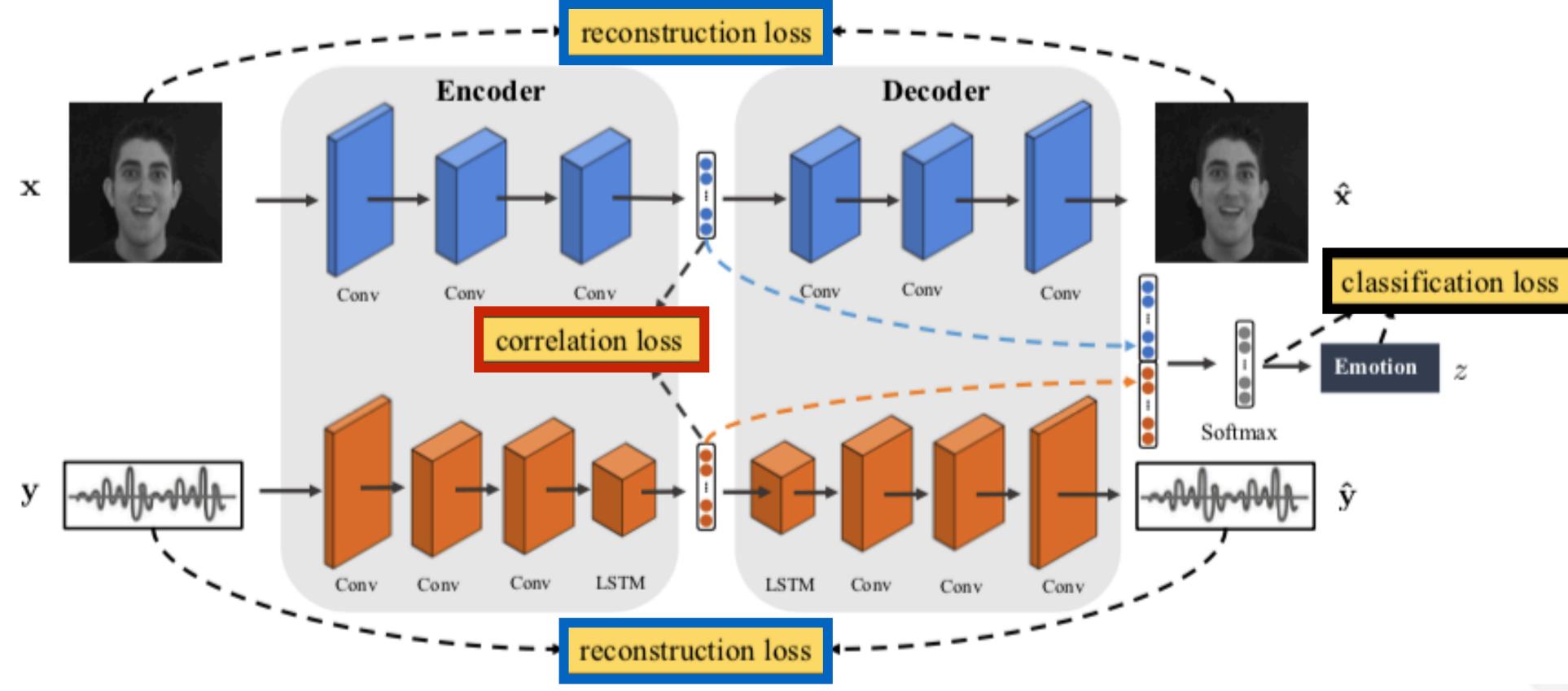
Public information: maximize correlation between modalities



Public information: maximize correlation between modalities Private information: preserving structure of each modality



Public information: maximize correlation between modalities **Private information:** preserving structure of each modality Utility: classification using fused features



Evaluation

tested on two video-audio emotion databases: eNTERFACE'05 and RML

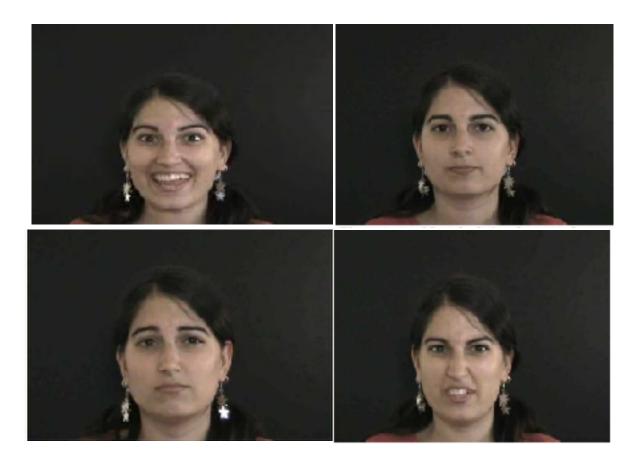
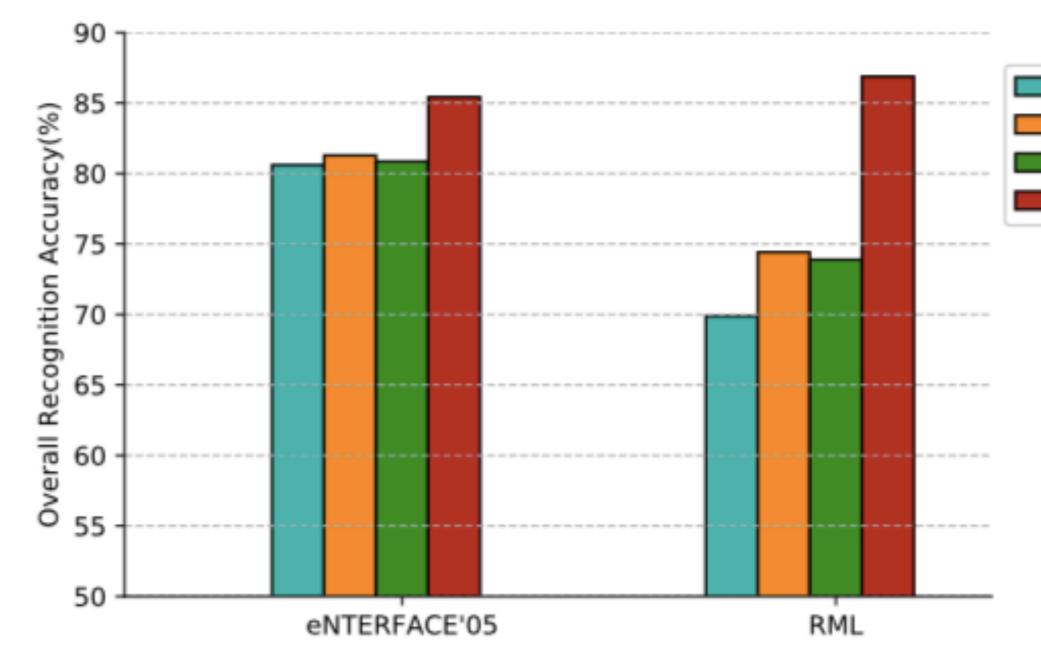


Table 1: Recognition performance of our method.

	Audio	Visual	Audio-Visual
eNTERFACE'05	58.95	83.21	85.43
RML	72.44	80.77	86.89

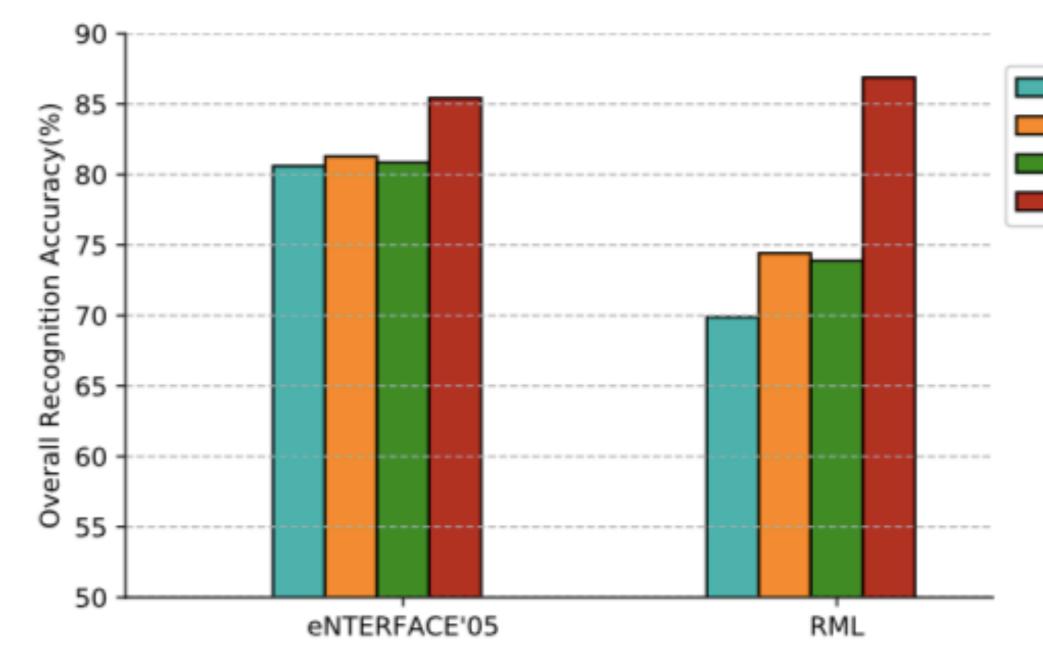
Evaluation

comparison with CCA-based methods



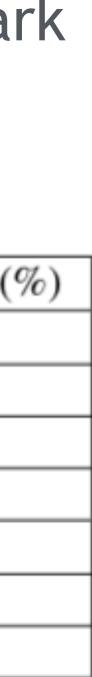
Evaluation

comparison with CCA-based methods



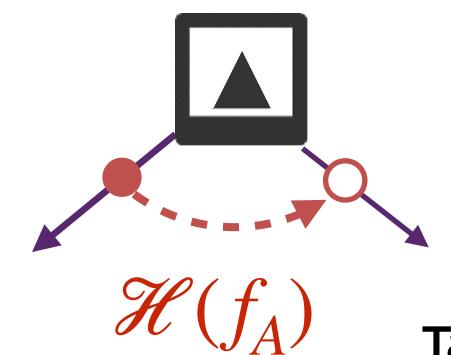
comparison with existing benchmark results

eNTERFACE'05 Hossain et al., [4] 83.06 Dobrišek et al., [5] 77.50 Wang et al., [10] 72.47 ours 85.43 Fadil et al., [3] 79.72			
eNTERFACE'05 Dobrišek et al., [5] 77.50 Wang et al., [10] 72.47 ours 85.43 Fadil et al., [3] 79.72		Method	Accuracy(
eNTERFACE 05 Wang et al., [10] 72.47 Ours 85.43 Fadil et al., [3] 79.72		Hossain et al., [4]	83.06
Wang et al., [10] 72.47 ours 85.43 Fadil et al., [3] 79.72	eNTERFACE'05	Dobrišek et al., [5]	77.50
Fadil et al., [3] 79.72	ENTERIACE 05	Wang et al., [10]	72.47
		ours	85.43
RML Wang et al., [10] 82.22		Fadil et al., [3]	79.72
	RML	Wang et al., [10]	82.22
ours 86.89		ours	86.89



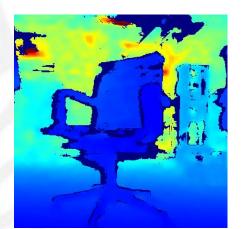
Summary

Estimate task transferability

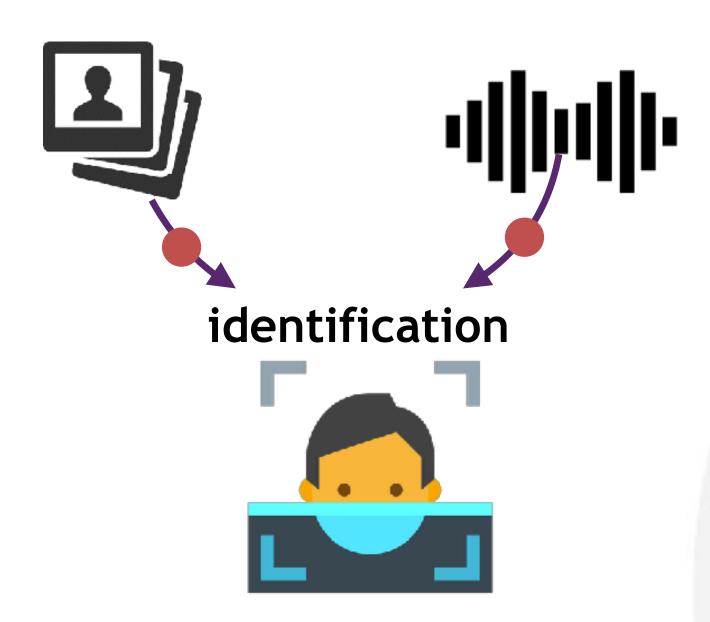


Task A

Task B

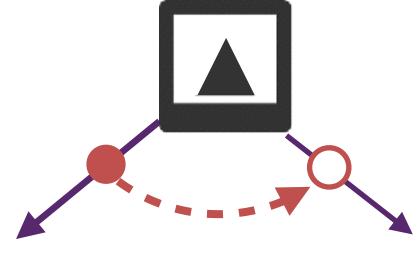


Multi-view learning



Summary

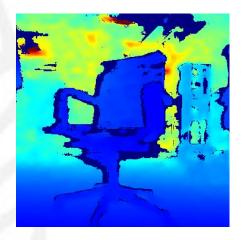
Estimate task transferability



Task A

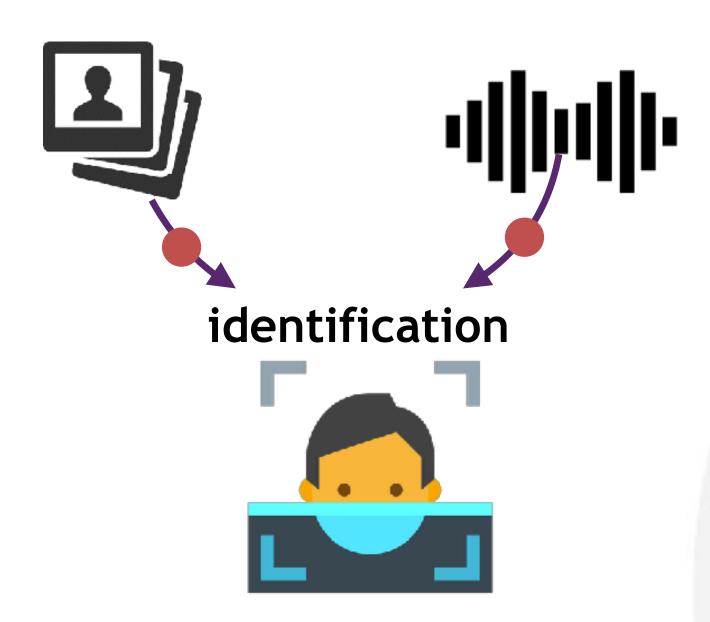
 $\mathcal{H}(f_A)$

Task B



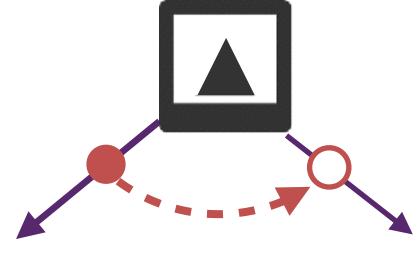
equivalent to HGR maximal correlation with fixed f(X)

Multi-view learning



Summary

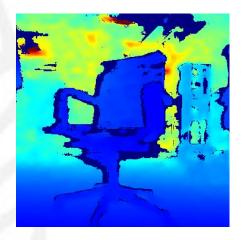
Estimate task transferability



Task A

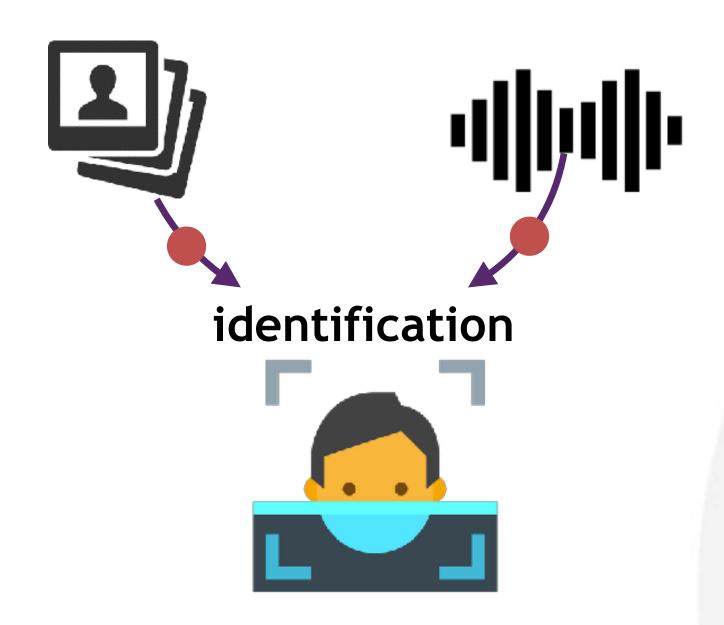
 $\mathcal{H}(f_A)$

Task B



equivalent to HGR maximal correlation with fixed f(X)

Multi-view learning



learn maximal correlation representations

Conclusion

Conclusion

 Exploiting shared representation between tasks and between multi-view data is important for complex AI applications

Conclusion

Exploiting shared representation between tasks and applications

extract shared information

between multi-view data is important for complex AI

HGR Maximal correlation is a useful tool to measure and

Related Publications

Yajie Bao*, **Yang Li***, Shao-Lun Huang, Lin Zhang, Lizhong Zheng, Amir Zamir and Leonidas Guibas, <u>An</u> <u>Information-Theoretic Metric of Transferability for</u> <u>Task Transfer Learning</u>, ICIP 2019 (joint first author)

Jing Lian*, Yang Li, Weixi Gu, Shao-Lun, Huang, Lin Zhang, <u>Joint mobility pattern mining with urban</u> region partitions, Mobiquitous 2018 (Best Paper)

Fei Ma*, Wei Zhang, Yang Li, Shao-Lun Huang, and Lir Zhang, <u>An end-to-end Learning Approach for</u> <u>Multimodal Emotion Recognition: Extracting Common</u> <u>and Private Information</u>, ICME 2019

Acknowledgement

- Prof. Shao-Lun Huang
- Prof. Leonidas Guibas
- Prof. Lizhong Zheng
- Prof. Lin Zhang

- Yajie Bao
- Changjin Liu
- Jing Lian
- Lu Li
- Fei Ma
- Xiangxiang Xu

TBSI 清华-伯克利深圳学院 Tsinghua-Berkeley Shenzhen Institut

Massachusetts Institute of Technology

