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1. DERIVATION OF EQUATION (5)

First, we need to introduce some additional notations. Let X ,
x, X and PX represent a random variable, a value, the alphabet
and the probability distribution respectively.

√
PX denotes the

vector with entries
√
PX(x) and [

√
PX ] ∈ R|X |×|X| denotes

the diagonal matrix of
√

PX . For joint distribution PY X ,
PY X ∈ R|Y|×|X| represents the probability matrix. Given
k feature functions fi : X → R, i = 1, ..., k, let f(x) =
[f1(x), ..., fk(x)] ∈ Rk be the feature vector of x, and F =
[f(x1)T, ..., f(x|X |)

T]T ∈ R|X |×k be the feature matrix over
all elements in X .

The left hand side of Equation (5) can be expressed as

||B̃Φ(ΦTΦ)−
1
2 ||2F =tr

(
(ΦTΦ)−

1
2 ΦTB̃TB̃Φ(ΦTΦ)−

1
2

)
=tr
(

(ΦTΦ)−1ΦTB̃TB̃Φ
)

(S1)

Since any feature function can be centered by subtracting the
mean, without the loss of generality, we assume E[f(X)] = 0.
Using the one-to-one correspondence between Φ and F , i.e.
Φ =

[√
PX
]
F ∈ R|X |×k, we have

ΦTΦ =
([√

PX

]
F
)T ([√

PX

]
F
)

= E[f(X)Tf(X)]

= cov(f(X)) (S2)

The DTM matrix B̃ introduced in Definition 1 can be writ-
ten in matrix notation: B̃ =

[√
PY
]−1

PY X
[√

PX
]−1 −

√
PY
√

PX
T
. Then we have,

B̃Φ =
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PY

]−1
PY X
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PX

]−1
−
√

PY
√

PX
T
)
·[√

PX

]
F

=
[√

PY

] (
[PY ]

−1
PY XF − 1 · E[f(X)]T

)
,

where 1 is a column vector with all entries 1 and length |Y|. It

? Joint-first authors

follows that,

ΦTB̃TB̃Φ =
(

[PY ]
−1

PY XF − 1 · E[f(X)]T
)T
·

[PY ]
(

[PY ]
−1

PY XF − 1 · E[f(X)]T
)

=EPY

[
(E[f(X)|Y ]− 1 · E[f(X)]T)T·

(E[f(X)|Y ]− 1 · E[f(X)]T)
]

=cov (E[f(X)|Y ]) (S3)

By substituting (S2) and (S3) into (S1), we have

||B̃Φ(ΦTΦ)−
1
2 ||2F = tr

(
cov(f(X))−1cov(E[f(X)|Y ])

)
2. OPERATIONAL MEANING OF H-SCORE

In this section, we will show that H-score characterizes the
asymptotic probability of error in the hypothesis testing con-
text. We will start with some background on error exponents
from statistics, then explain how to estimate it using informa-
tion geometry. Finally, we will show how computing H-score
is in fact estimating the error exponent of a feature function
on the sample data.

2.1. Error Exponent and Hypothesis Testing

Consider the binary hypothesis testing problem over m i.i.d.
sampled observations {x(i)}mi=1 , xm with the following
hypotheses: H0 : xm ∼ P1 or H1 : xm ∼ P2.

Let Pxm be the empirical distribution of the samples.
The optimal test, i.e., the log likelihood ratio test log(T ) =

log P1(x
m)

P2(xm) can be stated in terms of information-theoretic
quantities as follows:

m[D(Pxm ||P2)−D(Pxm ||P1)]
H0

≷
H1

log T

where D is the Kullback-Leibler (KL) divergence operator.
Further, using Sannov’s theorem, we have the asymptotic

probability of type I error:

α = P1(Ac) ≈ 2−mD(P∗1 ||P1)



H0 : P1 H1 : P2

β = P2(A) α = P1(Ac)

A: fail to reject H0 Ac:reject H0

Pxm : D(Pxm‖P2)−D(Pxm‖P1) = log T
m

Fig. S1: The binary hypothesis testing problem. The blue
curves shows the probility density functions for P1 and P2.
The rejection region Ac and the acceptance region A are high-
lighted in red and blue, respectively. The vertical line indicates
the decision threshold.

where P ∗1 = argminP∈Ac D(P ||P1) and Ac(T ) = {xm :
D(Pxm ||P2)−D(Pxm ||P1) < 1

m log T} represents the rejec-
tion region. Similarly, the asymptotic probability of type II
error is

β = P2(A) ≈ 2−mD(P∗2 ||P2),

where P ∗2 = argminP∈AD(P ||P2) and A = {xm :
D(Pxm ||P2) − D(Pxm ||P1) > 1

m log T} represents the ac-
ceptance region (See Figure S1). Using the Bayesian approach
for hypothesis testing, the overall error probability of the log
likelihood ratio test is defined as:

P (m)
e = αP1 + βP2

and the best achievable exponent in the Bayesian probability
of error (a.k.a. error exponent) is defined as:

E = lim
m→∞

min
A⊆Xm

− 1

m
logP (m)

e

Error exponent E expresses the best rate at which the error
probability decays as sample size increases for a particular
hypothesis testing problem. See [1] for more background
information on error exponents and its related theorems.

2.2. Estimating Error Exponents

Suppose P1 and P2 are sampled from the ε-neighborhood
Nε(P0) , {P |

∑
x∈X

(P (x)−P0(x))
2

P0(x)
≤ ε2} centered at a ref-

erence distributon P0, and let φ1, φ2 ∈ R|X | be vectors defined
as:

φi(x) ,
Pi(x)− P0(x)

ε
√
P0(x)

for i = 1, 2. The following lemma express the optimal error
exponent E using φ1 and φ2:

Lemma 1. Under the local assumption defined earlier, the
best achievable error exponent of the binary hypothesis testing
problem with probabilities P1 and P2 is:

E =
ε2

8
‖φ1 − φ2‖2 + o(ε2)

where ε is a constant [2].

While the above lemma characterizes the asymptotic error
probability distinguishing P1 and P2 based on the optimal
decision function, most decision functions we learn from data
are not optimal, as P1 and P2 are unknown. Given sample data
xm and an arbitrary feature function f : X → R, which could
be learned from a pre-trained model, the error exponent of the
decision function based on f is reduced in a way defined by
the following Lemma:

Lemma 2. Given a zero-mean, unit variance feature func-
tion f : X → R and i.i.d. sampled data xm, the error
probability of a mismatched decision function of the form
l = 1

m

∑m
i=1(f(x(i))) has an exponent

Ef =
ε2

8
〈ξ, φ1 − φ2〉2 + o(ε2)

where ξ ∈ R|X | is a vector with entries ξ(x) =
√
P0(x)f(x)

[2].

This lemma characterizes the error probability of using a
normalized feature of the input data to solve a learning task
by a linear projection of this feature between the input and
output domains. Note that normalizing features to zero-mean
and unit variance results in an equivalent decision function
with a different threshold value, thus we can apply Lemma
2 to any features without the loss of generality. Further, it’s
obvious that the reduced exponent Ef is maximized when
ξ = φ1 − φ2, and the optimal value is exactly the optimal
error exponent E in Lemma 1. To estimate the reduced error
exponent for multi-dimensional features, we present the k-
dimensional generalization of Lemma 2 below:

Lemma 3. Given k normalized feature functions f(x) =
[f1(x), . . . , fk(x)], such that E[fi(X)] = 0 for all i, and
cov(f(X)) = I , we define a k-d statistics of the form lk =
(l1, ..., lk) where li = 1

m

∑m
l=1 fi(x

(l)). Let ξ1, . . . , ξk be k
vectors with entries ξi(x) =

√
PX(x)fi(x) , 0 ≤ i ≤ k. Then

the error exponent of lk is

Ekf =

k∑
i=1

Efi =

k∑
i=l

ε2

8
〈ξi, φ1 − φ2〉2 + o(ε2) (S4)

The proof of this Lemma can be found in [3].

2.3. H-score and Error Exponents

Now we return to the binary classification problem. Using
Lemma 3, we will show the linear relationship between H-
score and error exponents.



Theorem 1. Given PX|Y=0, PX|Y=1 ∈ NXε (P0,X) and fea-
tures f such that E [f(X)] = 0 and E[f(X)f(X)T] = I ,
there exists some constant c independent of f such that Ekf =
cH(f).

Proof. By Lemma 3, the L.H.S. of the equation can be written
as Ekf = c0

∑k
i=l 〈ξi, φ1 − φ2〉

2 for some constant c0. It
follows that

c0

k∑
i=l

〈ξi, φ1 − φ2〉2

=c0

((
PX|Y=0 − PX|Y=1

)T
F
)((

PX|Y=0 − PX|Y=1

)T
F
)T

=c0 (E[f(X)|Y = 0]− E[f(X)|Y = 1])
T ·

(E[f(X)|Y = 0]− E[f(X)|Y = 1])

=c0
PY (0) + PY (1)

PY (0)PY (1)

(
PY (0)PY (1) + PY (1)2

PY (0)

)
·

E [f(X)|Y = 1]
T E [f(X)|Y = 1]

=c tr (cov(E[f(X)|Y ]))

=cH(f)

The last equation uses the fact cov(f(X)) = I .

3. EXPERIMENT DETAILS

3.1. Experiment 4.1

Experiment Setup. The training data for the target task in
this experiment consists of 20, 000 images randomly sampled
from the Cifar-100 dataset [4]. It is further split 9:1 into a
training set and a testing set.

We first extracted features of the Cifar-100 training images
from five different layers (4a - 4f) of the ResNet-50 model
pretrained on ImageNet-1000 [5]. Then we computed the H-
score and the empirical transfer performance of each feature
function for the Cifar-100 task. To compute the empirical
performance, we trained the transfer network using stochastic
gradient descent with batch size 20, 000 for 100 epochs.
Result Discussion. As shown in Fig. 2.a of the main pa-
per, transfer performance is better when an upper layer of the
source networks is transferred. This could be due to the inher-
ent similarity between the target task and the source task, such
that the optimal representation learned for one task can still be
suitable for the other. For the experiment of selecting the best
target task (Fig. 2.b), we used the same network as the for-
mer experiment to compute the empirical transfer performance
with batch size 64 for 50 epochs.

In addition, we validated H-score under different target
sample sizes between 5-50K. Fig. S2 shows that target sample
size does not affect the relationship between H-score and log-
loss, which further demonstrates that the H-score computation
is sample efficient.
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Fig. S2: H-score and transferability vs. the empirical transfer
performance measured by log-loss for different target sample
size (5K-50K).

3.2. Experiment 4.2

Data and Tasks. The Taskonomy dataset [6] contains
4,000,000 images of indoor scenes collected from 600 build-
ings. Every image has annotations for 26 computer vision
tasks. For the transferability experiment, we randomly sam-
pled 20, 000 images as the target task training data, and
selected eight supervised tasks, shown in Table S1.

Tasks Description Output Quantize-
level

Edge2D 2D edges detection images 16
Edge3D 3D occlusion edges

detection
images 16

Keypoint2D 2D keypoint detection images 16
Keypoint3D 3D keypoint detection images 16
Reshading Image reshading images 16
Depth Depth estimation images 16

Object Class. Object classification labels none
Scene Class. Scene classification labels none

Table S1: Task descriptions

Feature Extraction and Data Preprocessing. For each task,
[6] trained a fully supervised network with an encoder-decoder
structure. When testing the transfer performance from source
task TS to target task TT , the encoder output of TS is used
for training the decoder of TT . For a fair comparison, we
used the same trained encoders to extract source features. The
output dimension of all encoders are 16 × 16 × 8 and we
flattened the output into a vector of length 2048. To reduce the
computational complexity, we also resized the ground truth
images into 64× 64.
Label Quantization. Fig. S3 illustrates the resizing and
quantization process of a pixel-to-pixel task label. During
the quantization process, we are primarily concerned with
two factors: computational complexity and information loss.
Too much information loss will lead to bad approximation



Fig. S3: Quantization. Recover is done with the centroid of
corresponding cluster of each pixel.

of the original problem. On the other hand, having little
information loss requires larger label space (cluster size) and
higher computation cost. To test the sensitivity of the cluster
size, we use cluster centroids to recover the ground truth
image pixel-by-pixel. The recovery results for 3D occlusion
edge detection is shown in Figure S4. When the cluster size is
N = 5 (right), most detected edges in the ground truth image
(left) are lost. We found that N = 16 strikes a good balance
between recoverability and computation cost.

Fig. S4: Effect of quantization cluster size for 3D occlusion
Edge detection.

Comparison of H-scores and Affinities. Table S2 presents
the numerical values of the transferability and affinity scores
between every pair of tasks, with columns representing source
tasks and rows representing target tasks. This table is in direct
correspondence with the ranking matrices in Fig. 3 of the main
paper. For each target task, the upper row shows our results
while the lower one shows the results in [6]. Score values are
included in parenteses.

Here we present some detailed results on the comparison
between H-score and the affinity score in [6] for pairwise
transfer. The results of transferring from all tasks to the two
classification tasks (Object Class. and Scene Class.) are shown
in Figure S5; The results of transferring to Depth is shown in
S6. We can see in general, although affinity and transferability
have totally different value ranges, they tend to agree on the
order of the top few ranked tasks.
Computing Efficiency. We ran the experiment on a work-
station with 3.40 GHz ×8 CPU and 16 GB memory. Each
pairwise H-score computation finished in less than one hour
including preprocessing.

Fig. S5: Source task transferability ranking for classification
tasks. For each target task, the left figure shows H-score results,
and the right figure shows task affinity results.

Fig. S6: Comparison between source task rankings for Depth.
with H-score results on the left and affinity scores [6] on the
right. The Top 3 transferable source tasks in both methods are
the same: Depth, Image Reshading and 3D Occlusion Edges.



Table S2: Transferability ranking comparison, between H-score’s estimation and task affinity

Tasks 2D Edges 2D Keypoints 3D Edges 3D Keypoints Reshading Depth Object Class. Scene Class.

2D Edges 1 (1.8216) 2 (1.7334) 5 (1.5704) 6 (1.5696) 4 (1.6146) 3 (1.6201) 7 (1.5097) 8 (1.4402)

1 (0.0389) 2 (0.0117) 4 (5.8920e-5) 3 (8.8011e-5) 7 (2.9001e-5) 8 (2.2110e-5) 5 (4.9141e-5) 6 (4.8720e-5)

2D Keypoints 2 (1.6698) 1 (1.7859) 7 (1.5248) 5 (1.5287) 4 (1.5481) 3 (1.5632) 6 (1.5253) 8 (1.4725)

2 (0.0002) 1 (0.0542) 7 (7.7797e-5) 5 (8.1029e-5) 6 (7.8464e-5) 8 (7.2724e-5) 3 (0.0002) 4 (0.0001)

3D Edges 5 (1.4828) 4 (1.4910) 3 (1.5167) 7 (1.4701) 2 (1.5405) 1 (1.6739) 8 (1.4644) 6 (1.4730)

6 (0.0117) 7 (0.0108) 1 (0.1179) 2 (0.0734) 4 (0.0622) 3 (0.0636) 8 (0.0094) 5 (0.0151)

3D Keypoints 6 (1.5375) 5 (1.5466) 4 (1.5910) 3 (1.6456) 1 (1.7198) 2 (1.7122) 7 (1.4709) 8 (1.4121)

5 (0.0141) 6 (0.0136) 2 (0.0531) 1(0.1275) 3 (0.0400) 4 (0.0247) 7 (0.0132) 8 (0.0121)

Reshading 5 (1.5504) 6 (1.5426) 3 (1.8174) 4 (1.7990) 1 (2.2339) 2 (2.1200) 7 (1.4774) 8 (1.3804)

6 (0.0147) 8 (0.0143) 2 (0.0781) 4(0.0545) 1 (0.1121) 3 (0.0765) 7 (0.0144) 5 (0.0174)

Depth 6 (1.6542) 5 (1.6870) 3 (1.8504) 4 (1.8176) 2 (2.1700) 1 (2.2441) 7 (1.6008) 8 (1.5099)

7 (0.0175) 8 (0.0154) 3 (0.0595) 4 (0.0617) 2 (0.0867) 1 (0.0989) 6 (0.0217) 5 (0.0237)

Object Class. 5 (22.866) 4 (23.627) 7 (22.371) 8 (21.950) 6 (22.452) 3 (23.697) 1 (33.468) 2 (28.013)

7 (0.0205) 6 (0.0217) 3 (0.0350) 4 (0.0318) 5 (0.0286) 8 (0.0147) 1 (0.0959) 2 (0.0774)

Scene Class. 5 (14.575) 4 (15.074) 7 (14.206) 8 (13.801) 6 (14.332) 3 (15.474) 2 (25.750) 1 (25.962)

8 (0.0149) 7 (0.0165) 3 (0.0335) 4 (0.0305) 5 (0.0263) 6 (0.0198) 2 (0.0504) 1 (0.1474)

3.3. Experiment 4.3

Data and Tasks. The NUS-WIDE dataset [7] contains
161,789 web images for training and 107,859 images for eval-
uation. Its tag set consists of 81 concepts, among which we
selected two subsets, shown in Table S3. One subset contains
36 common concepts including scenes, animals and objects;
The other subset contains only animal concepts. The NUS-
WIDE dataset provides six types of low-level features. In this
experiment, we used the 500 dimensional bag-of-words feature
based on the SIFT descriptors.

Common concepts beach, birds, boats, bridge, build-
ings, cars, cat, clouds, dancing, dog,
fish, flowers, garden, grass, house,
lake, leaf, moon, mountain, ocean,
person, plants, rainbow, rocks, run-
ning, sand, sky, sports, street, sun,
swimmers, town, tree, vehicle, wa-
ter, window

Animal concepts animal, bear, cat, cow, dog, elk, fox,
horses, tiger, zebra

Table S3: Subsets of NUS-WIDE tag concepts used in Exper-
iment 4.3

Feature Extraction and Data Preprocessing. We consider
the prediction of each concept as an unbalanced binary classifi-
cation task and train a 4-layer fully-connected neural network
(Fig. S7) with batch-size 2048 for 50 epochs. For an arbitrary
target task, the layer 3 activation output of the source models
are used to calculate the H-scores.

Fig. S7: Network structure for NUS-WIDE experiment.

Task Transfer Curriculum. Given n tasks T1, . . . , Tn, first
we compute the pairwise transferability matrix M ∈ Rn×n

using H-score, whereM(i, j) =
HTj (fTi )
HTj (fTj )

for all 1 ≤ i, j ≤ n.
We assume that the task-specific features are close to optimal,
such that HTj (fTj ) ≈ HTj (fTjopt). Then by Definition 3,
M(i, j) ≈ T(Ti, Tj). Using the transferability matrix, we
define an undirected graph G over the tasks, where the edge
weight between node i and node j is defined by

W (i, j) =

1−max{M(i, j),M(j, i)} if max{M(i, j),M(j, i)}
≥ α

0 otherwise

Parameter α defines the threshold to filter out less related task
pairs, as the transferred representation in these cases contribute
very little to the training of the target task. If G is connected,
the minimum spanning tree outputs a set of task pairs that



maximizes the total transferability with n− 1 pairwise trans-
fers. If G is not connected, we have a minimum spanning
forest that represents several task groups that can be learned
independently. Finally, we recover the transfer directions on
the minimum spanning tree from the transferability matrix.

For the subset with 36 common concepts in the NUS-
WIDE experiment, we found that when α = 0, i.e. no edges
are filtered, 33 of the 35 edges in the resulting tree indicate
transfers to concept ’sky’ from other concepts. This phe-
nomenon is reasonable in that sky and other concepts coexist
in images with a high probability. To demonstrate the most
significant task relationships, we set edge threshold α to be
the 2.3 percentile of all weights, resulting in the minimum
spanning tree in Fig. 7 of the main paper. On the other hand,
edge filtering is not needed for the Taskonomy tasks and the
animal concepts in the NUS-WIDE experiment, since most
tasks are transferable to a similar extent. Therefore we chose
α = 0 in these cases.

4. RELATED WORKS

Transfer learning. Transfer learning can be devided into two
categories: domain adaptation, where knowledge transfer is
achieved by making representations learned from one input
domain work on a different input domain, e.g. adapt models for
RGB images to infrared images [8]; and task transfer learning,
where knowledge is transferred between different tasks on the
same input domain [9]. Our paper focus on the latter prolem.
Empirical studies on transferability. [10] compared the
transfer accuracy of features from different layers in a neural
network between image classification tasks. A similar study
was performed for NLP tasks by [11]. [6] determined the opti-
mal transfer hierarchy over a collection of perceptual indoor
scene understanidng tasks, while transferability was measured
by a non-parameteric score called ”task affinity” derived from
neural network transfer losses coupled with an ordinal normal-
ization scheme.
Task relatedness. One approach to define task relatedness is
based on task generation. Generalization bounds have been
derived for multi-task learning [12], learning-to-learn [13] and
life-long learning [14]. Although these studies show theo-
retical results on transferability, it is hard to infer from data
whether the assumptions are satisfied. Another approach is
estimating task relatedness from data, either explicitly [15, 16]
or implicitly as a regularization term on the network weights
[17, 18]. Most works in this category are limited to shallow
ones in terms of the model parameters.
Representation learning and evaluation. Selecting optimal
features for a given task is traditionally performed via feature
subset selection or feature weight learning. Subset selection
chooses features with maximal relevance and minimal redun-
dancy according to information theoretic or statistical criteria
[19, 20]. The feature weight approach learns the task while
regularizing feature weights with sparsity constraints, which

is common in multi-task learning [21, 22]. In a different per-
spective, [23] consider the universal feature selection problem,
which finds the most informative features from data when the
exact inference problem is unknown. When the target task is
given, the universal feature is equivalent to the minimum error
probability feature used in this work.
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