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ABSTRACT
Task transfer learning is a popular technique in image pro-
cessing applications that uses pre-trained models to reduce
the supervision cost of related tasks. An important question
is to determine task transferability, i.e. given a common in-
put domain, estimating to what extent representations learned
from a source task can help in learning a target task. Typically,
transferability is either measured experimentally or inferred
through task relatedness, which is often defined without a clear
operational meaning. In this paper, we present a novel met-
ric, H-score, an easily-computable evaluation function that
estimates the performance of transferred representations from
one task to another in classification problems using statisti-
cal and information theoretic principles. Experiments on real
image data show that our metric is not only consistent with
the empirical transferability measurement, but also useful to
practitioners in applications such as source model selection
and task transfer curriculum learning.

Index Terms— Task transfer learning, Transferability, H-
Score, Image recognition & classification

1 Introduction
Transfer learning is a learning paradigm that exploits the relat-
edness between different learning tasks in order to gain certain
benefits, e.g. reducing the demand for supervision ([1]). In
task transfer learning, we assume that the input domain of
the different tasks are the same. Then for a target task TT ,
instead of learning a model from scratch, we can initialize the
parameters from a previously trained model for some related
source task TS (Figure 1). For example, deep convolutional
neural networks trained for the ImageNet classification task
have been used as the source network in transfer learning for
target tasks with fewer labeled data [2], such as medical image
analysis [3] and structural damage recognition in buildings [4].

An imperative question in task transfer learning is trans-
ferability, i.e. when a transfer may work and to what extent.
Given a metric capable of efficiently and accurately measur-
ing transferability across arbitrary tasks, the problem of task
transfer learning, to a large extent, is simplified to search pro-
cedures over potential transfer sources and targets as quantified
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Fig. 1: A generic model of task transfer learning. The pro-
posed transferability metric T(S, T ) can predict the target
task’s performance without training the task transfer network.

by the metric. Traditionally, transferability is measured purely
empirically using model loss or accuracy on the validation set
([5, 6, 7]). There have been theoretical studies that focus on
task relatedness ([8, 9, 10, 11]). However, they either cannot
be computed explicitly from data or do not directly explain
task transfer performance. In this study, we aim to estimate
transferability analytically, directly from the training data.

We quantify the transferability of feature representations
across tasks via an approach grounded in statistics and infor-
mation theory. The key idea of our method is to show that the
expected log-loss of using a feature of the input data to predict
the label of a given task under the probabilistic model can be
characterized by an analytically expression, which we refer
as the H-score of the feature. H-score is particularly useful to
quantify feature transferability among tasks. Using this idea,
we define task transferability as the normalized H-score of the
optimal source task feature with respect to the target task.

As we demonstrate in this paper, the advantage of our trans-
ferability metric is threefold. (i) it is theoretically driven and
has a strong operational meaning rooted in statistics and infor-
mation theory; (ii) it can be computed directly and efficiently
from the input data, with fewer samples than those needed
for empirical learning; (iii) it can be shown to be strongly
consistent with empirical transferability measurements.

2 Measuring Feature Effectiveness
Let X and Y denote the input and output space respectively.
Denote the transferred feature representation by f : X → Rk.



For a classification task, let hf : X × Y → [0, 1]|Y| be
a predictor function with the log-loss function L(f(x), y)
for a given (x, y) sample. The traditional machine learn-
ing approach uses stochastic gradient descent to minimize
L(h) = EX,Y [L(f(x), y)]. We will show that the optimal log
loss when f is given can be characterized analytically using
concepts in information theory and statistics.

Definition 1. The Divergence Transition Matrix (DTM) of
discrete random variables X and Y is a |Y| by |X | matrix B̂
with entries B̂y,x = PXY (x,y)√

PX(x)
√
PY (y)

−
√
PY (y)

√
PX(x) for

all x ∈ X and y ∈ Y .

Given m training examples {(x(i), y(i))}mi=1, L(h) can be
written as

L(f, θ) =− 1

m

m∑
i=1

|Y|∑
k=1

1{y(i) = k} log
e−θ

T
k f(x(i))∑|Y|

j=1 e
−θTj f(x(i))

(1)

Using concepts in Euclidean information geometry, it is shown
in [12] that under a local assumption, for a given feature di-
mension k,

argmin
f,θ

L(f, θ) = argmin
Ψ∈R|X|×k,Φ∈R|Y|×k

1

2
‖B̃−ΨΦT‖2F+o(ε2)

(2)
Let φ(x) represent row vectors of Φ for any x ∈ X . By
defining a one-to-one mapping f(x)↔ φ(x) such that φ(x) =√
PX(x)f(x), Eq. (2) reveals a close connection between

the optimal log-loss and the modal decomposition of B̃. In
consequence, it is reasonable to measure the classification
performance with ‖B̃ −ΨΦT‖2F given f(X). i.e. Since Φ is
fixed, we can find the optimal Ψ , Ψ∗ by taking the derivative
of the objective function with respect to Ψ:

Ψ∗ = B̃Φ(ΦTΦ)−1 (3)

Substituting (3) in the Objective of (2), we can derive the
following close-form solution for the log loss:

‖B̃‖2F − ‖B̃Φ(ΦTΦ)−
1
2 ‖2F (4)

The first term in (4) does not depend on f(X), therefore it
is sufficient to use the second term to estimate classification
performance with transferred feature f . We can further rewrite
||B̃Φ(ΦTΦ)−

1
2 ||2F as follows and denote it as the H-score.

Definition 2. Given data matrix X ∈ Rm×d and label Y , let
f(X) be a k-dim, zero-mean feature function. The H-Score of
f with respect to a task with joint probability PY X is:

H(f) = tr(cov(f(X))−1cov(EPX|Y [f(X)|Y ])) (5)

The derivation of (5) can be found in Section 1 of the
Supplementary Material. This formulation can be intuitively

interpreted from a nearest neighbor perspective. i.e. a high
H-score implies the inter-class variance cov(EPX|Y [f(X)|Y ])
of f is large, while feature redundancy tr(cov(f(X))) is small.
Comparing to finding the optimal log-loss through gradient
descent, H-score can be computed analytically and only re-
quires estimating the conditional expectation E[f(X)|Y ] from
sample data. Moreover,H(f) has an operational meaning that
characterizes the asymptotic error probability of using f(X)
to estimate Y in the hypothesis testing context. (See Section 2
in the Supplementary Material for details).

The upper bound of H(f) is obvious from its first defi-
nition: maxΦ ||BΦ(ΦTΦ)−

1
2 ||2F = ||B̃||2F . We call features

that achieve this bound the minimum error probability features
for a given task.

3 Transferability
Next, we apply H-score to efficiently measure the effectiveness
of task transfer learning. We will use subscripts S and T to
distinguish variables for the source and the target tasks.

A natural way to quantify transferability is as follows:

Definition 3 (Task transferability). Given source task TS , tar-
get task TT and pre-trained source feature fS(x), the transfer-
ability from TS to TT is T(S, T ) , HT (fS)

HT (fTopt )
, where fTopt(x)

is the minimum error probability feature of the target task.

This definition implies 0 ≤ T(S, T ) ≤ 1. With a known f ,
computing H-score from m sample data only takes O(mk2)
time, where k is the dimension of f(x) for k < m. The
majority of the computation time is spent on computing the
sample covariance matrix cov(f(X)).

The remaining question is how to obtain HT (fTopt) ef-
ficiently. This question has been addressed in [13], which
shows that ||B̃T ||2F = E[f(X)Tg(Y )], where f and g are the
solutions of the HGR-Maximum Correlation problem.

ρ(X;Y ) = sup
f : X → Rk, g : Y → Rk

E[f(X)] = E[g(Y )] = 0
E[f(X)f(X)T ] = I

E[f(X)T g(Y )] (6)

Eq. (6) can be solved efficiently using the Alternating Con-
ditional Expectation (ACE) algorithm [14] for discrete X , or
using the neural network approach based on Generalized Max-
imal HGR Correlation [15] for a generic X . The sample com-
plexity of ACE is only 1/k of the complexity of estimating
PY X directly [16]. This result also applies to the Generalized
HGR problem due to their theoretical equivalence.

A common technique in task transfer learning is fine-
tuning, which adds before the target classifier additional free
layers, whose parameters are optimized with respect to the
target label. For the operational meaning of transferability to
hold exactly, we require the fine tuning layers consist of only
linear transformations. Nevertheless, later we will demonstrate
empirically that this transferability metric can still be used for



comparing the relative task transferability with fine-tuning. In
many cases though, the computation of HT (fopt) can even be
skipped entirely, such as the problem below:

Definition 4 (Source task selection). Given N source tasks
TS1

, . . . , TSN
with labels YS1

, . . . , YSN
and a target task TT

with label YT . Let fS1
, . . . , fSN

be optimal representations
for the source tasks. Find the source task TSi that maximizes
the testing accuracy of predicting YT with feature fSi .

We can solve this problem by selecting the source task
with the largest transferability to TT . In fact, we only need
to compute the numerator in the transferability definition
since the denominator is the same for all source tasks, i.e.
argmaxi T(Si, T ) = argmaxiH(fSi).

4 Experiments
In this section, we present validation results and potential
application of our transferability metric on real image data. 1

4.1 Validation of transfer performance
We validate H-score and transferability definitions in a trans-
fer learning problem from ImageNet 1000-class classification
(ImageNet-1000) to Cifar 100-class classification (Cifar-100).
Figure 2.a compares the H-score and empirical performance of
transferring from five different layers (4a-4f) of the ResNet-50
model pretrained on ImageNet1000. As H-score increases,
log-loss of the target network decreases almost linearly while
the training and testing accuracy increase, which validates the
relationship between the expected log-loss and H-score. The
training and testing accuracy are also positively correlated with
H-score. It also shows that H-score can be applied for selecting
the most suitable layer for fine-tuning in transfer learning.

(a) (b)
Fig. 2: H-score and transferability vs. the empirical transfer
performance measured by log-loss, training and testing accu-
racy. a.) Performance of ImageNet-1000 features from layers
4a-4f for Cifar-100 classification. b.): Transferability from
ImageNet-1000 to 4 different target tasks based on Cifar-100.

We further tested our transferability metric for selecting
the best target task for a given source task. In particular, we
constructed 4 target classification tasks with 3, 5, 10, and 20 ob-
ject categories from the Cifar-100 dataset. We then computed
the task transferability from ImageNet-1000 (using the feature

1Test data and code can be found at https://goo.gl/uoXj8m. More details
on the experiments can be found in Section 3 of the Supplementary Material.

representation of layer 4f) to the target tasks. In Figure2.b,
we observe a similar behavior as the H-score in the case of
a single target task in Figure 2.a, showing that transferability
can directly predict the empirical transfer performance.

4.2 Task transfer for 3D scene understanding
Next, we apply our transferability metric to solve the source
task selection problem among 8 image-based recognition tasks
for 3D scene understanding using the Taskonomy dataset[6].
We also compared the task transferability ranking based on
H-score with the ranking using task affinity, an empirical trans-
ferability metric proposed by [6] with fine tuning.
For a fair comparison, we use the same trained encoders in [6]
to extract source features with dimension k = 2048. It’s worth
noting that, six of eight tasks have images as their output. To
compute the transferability for these pixel-to-pixel tasks, we
cluster the pixel values of the output images in the training data
into a palette of 16 colors and then compute the H-score of the
source features with respect to each pixel. The transferability
of the task is computed as the average of the H-scores over all
pixels. For larger images, H-score can be evaluated on super
pixels instead of pixels to improve efficiency.

Table. 1: List of image scene understanding tasks

Classification tasks: Object Class., Scene Class.
Pixel-to-pixel tasks: Keypint2D, Edge3D, Keypoint2D,

Edge2D, Reshading, Depth

Transferability Task Hierarchy Affinity Ranking Correlation

DCG

Fig. 3: Ranking comparison between transferability and affin-
ity score.

Pairwise Transfer Results. Source task ranking results us-
ing transferability and affinity are visualized side by side in
Figure 3, with columns representing source tasks and rows
representing target tasks. For classification tasks (the bottom
two rows in the transferability matrix), the top two transferable
source tasks are identical for both methods. Similar observa-
tions can be found in 2D pixel-to-pixel tasks (top two rows).
A slightly larger difference between the two rankings can be
found in 3D pixel-to-pixel tasks, especially 3D Occlusion
Edges and 3D Keypoints. Though the top four ranked tasks of
both methods are exactly the four 3D tasks. It could indicate
that these low level vision tasks are closely related to each
other so that the transferability among them are inherently am-
biguous. We also computed the ranking correlations between

https://github.com/YaojieBao/An-Information-theoretic-Metric-of-Transferability


Fig. 4: Ranking of 2nd-order transferability for all tasks

Fig. 5: 1st and 2nd order pixel-wise transferability to Depth.

transferability and affinity using Spearman’s R and Discounted
Cumulative Gain (DCG). Both criterion show positive correla-
tions for all target tasks. The correlation is especially strong
with DCG as higher ranking entities are given larger weights.

To show the task relatedness, we represent each task with
a vector consisting of H-scores of all the source tasks for the
given task, then apply agglomerative clustering over the task
vectors. As shown in the dendrogram in Figure 3, 2D tasks
and most 3D tasks are grouped into different clusters, but
on a higher level, all pixel-to-pixel tasks are considered one
category compared to the classifications tasks.

Higher Order Transfer. A common way for higher order
transfer is to concatenate features from multiple models in
deep neural networks. Our transferability definition can be
easily adapted to such problems. Figure 4 shows the ranking
results of all combinations of source task pairs for each target
task. For all tasks except for Edge3D and Depth, the best
seond-order source feature is the combination of the top two
tasks of the first-order ranking. We examine the exception in
Figure 5, by visualizing the pixel-by-pixel H-scores of first
and second order transfers to Depth using a heatmap (lighter
color implies a higher H-score). Note that different source
tasks can be good at predicting different parts of the image.
The top row shows the results of combining tasks with two
different “transferability patterns” while the bottom row shows
those with similar patterns. Combining tasks with different
transferability patterns has a more significant improvement to
the overall performance of the target task.

Fig. 6: Minimum spanning tree of task transferability.

Fig. 7: Minimum spanning trees of binary image classification
tasks using the NUS-WIDE multi-label dataset.

4.3 Task transfer learning curriculum
A potential application of our transferability metric is devel-
oping an optimal task transfer curriculum, a directed acyclic
graph over tasks that specifies the order in which to obtain
labeled data for each task. For each task in the curriculum, an
optimal feature representation can be learned using both its
raw input and the representations of its parent tasks to improve
training efficiency. We use a heuristic based on the minimum
spanning tree of a task graph, whose edge weights are inversely
correlated with the larger transferability score between two
tasks. Fig. 7.a shows the task curriculum for the eight tasks in
Section 4.2. Furthermore, we did a similar experiments on a
collection of binary object classification tasks using the NUS-
WIDE multi-label dataset [17] (Fig. 7.b). We set a threshold
to show the most salient transfers and the resulting curriculum
are in line with human perception.

5 Conclusion
In this paper, we presented H-score, an information theoretic
approach to estimating the performance of features when trans-
ferred across classification tasks. Then we used it to define
a notion of task transferability in multi-task transfer learning
problems, that is both time and sample complexity efficient.
Our transferability score successfully predicted the perfor-
mance for transfering features from ImageNet-1000 classi-
fication task to Cifar-100 task. Moreover, we showed how
the transferability metric can be applied to a set of diverse
computer vision and image-based recognition tasks using the
Taskonomy and NUS-WIDE datasets. In future works, we will
investigate properties of higher order transferability, develop-
ing more scalable algorithms that avoid computing the H-score
of all task pairs. We also hope to design better task curriculum
for task transfer learning in practical applications.
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