
Large-Scale Joint Map Matching of GPS Traces

Yang Li
Stanford University
Stanford, CA, USA

yangli1@stanford.edu

Qixing Huang
Stanford University
Stanford, CA, USA

huangqx@stanford.edu

Michael Kerber
Stanford University and

MPC-VCC
Stanford, CA, USA

mkerber@mpi-inf.mpg.de
Lin Zhang

Tsinghua University
Beijing, China

linzhang@tsinghua.edu.cn

Leonidas Guibas
Stanford University
Stanford, CA, USA

guibas@cs.stanford.edu

ABSTRACT
We present a robust method for solving the map matching
problem exploiting massive GPS trace data. Map matching
is the problem of determining the path of a user on a map
from a sequence of GPS positions of that user — what we
call a trajectory. Commonly obtained from GPS devices,
such trajectory data is often sparse and noisy. As a result,
the accuracy of map matching is limited due to ambiguities
in the possible routes consistent with trajectory samples.
Our approach is based on the observation that many regu-
larity patterns exist among common trajectories of human
beings or vehicles as they normally move around. Among
all possible connected k-segments on the road network (i.e.,
consecutive edges along the network whose total length is
approximately k units), a typical trajectory collection only
utilizes a small fraction. This motivates our data-driven map
matching method, which optimizes the projected paths of
the input trajectories so that the number of the k-segments
being used is minimized. We present a formulation that
admits efficient computation via alternating optimization.
Furthermore, we have created a benchmark for evaluating
the performance of our algorithm and others alike. Exper-
imental results demonstrate that the proposed approach is
superior to state-of-art single trajectory map matching tech-
niques. Moreover, we also show that the extracted popular
k-segments can be used to process trajectories that are not
present in the original trajectory set. This leads to a map
matching algorithm that is as efficient as existing single tra-
jectory map matching algorithms, but with much improved
map matching accuracy.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org
SIGSPATIAL’13, November 05 - 08 2013, Orlando, FL, USA
Copyright 2013 ACM 978-1-4503-2521-9/13/11 $15.00
http://dx.doi.org/10.1145/2525314.2525333 .

Figure 1: Left: A sparse trajectory (black) and its
ground truth path (green); Right: Projected paths
of the trajectory in the left figure using data-driven
map matching (blue) and single-track map matching
(red).

General Terms
Algorithm, Theory

Keywords
map matching, data-driven, trajectory regularity, dynamic
programming, GPS data

1. INTRODUCTION
Map matching is the procedure of determining the path

of a user on a map from a sequence of GPS positions of that
user – what we call a trajectory. This procedure finds use
in many mobility related application, such as urban traffic
modeling [1][2], dynamic road map generation [3], and mo-
bility pattern mining [4]. Since collecting highly accurate
GPS traces on a city scale is quite costly, most of the trajec-
tory data available today were obtained indirectly through
GPS-equipped vehicles or users with GPS-enabled cellular
phones. The majority of the collected trajectories inevitably
contain a large amount of uncertain and incomplete infor-
mation. For example, one form of uncertainty comes from
GPS noise, which is particularly severe in urban environ-
ment due to signals obstructed by or reflected off buildings
(urban canyons). Incomplete data is often the result of a low
sampling rate, due to limitations on storage and communi-
cation bandwidth. For instance, 50% of the Beijing Taxi
Trajectories we employed in this study have at most one



Figure 2: We show an example of a trajectory
(black) whose underlying path (green) differs from
the path that is closest to the trajectory samples
points (red). The arrows indicate the travel direc-
tion of the user.

sample per minute. Building a robust algorithm for map
matching under such conditions is therefore a challenging
task that has led to ongoing research over several years.

Most existing map matching algorithms take a single GPS
trajectory as input. We refer them as single-track map
matching algorithms (SMM) [5]. They are typically formu-
lated with the objective of minimizing the distance between
the projected path on the map and the input trajectory,
and of achieving some other regularization objectives, such
as minimizing the length of the path. These algorithms work
well when the input trajectory is densely sampled and the
sampling error is small. However, their performance drops
significantly when the input trajectory becomes noisy and
sparse. In this case, the estimated path does not necessar-
ily need to be close to the input trajectory, and it may not
always follow or approximate the shortest path on the map.
(See Figure 2.)

We propose to address these issues using multi-track map
matching, i.e. simultaneously matching a collection of tra-
jectories to a map. The advantage of this approach comes
from the observation that human trajectories show a “high
degree of temporal and spatial regularity” [6]. In the context
of map matching, we have observed large amount of regular
structures in vehicle trajectories despite being driven by dif-
ferent drivers. Hence the aim of multi-track map matching is
to recover the regularity patterns (i.e., frequently used road
segments) among the input trajectories, and to preserve the
regularity in the matched paths. From a data driven per-
spective, multi-track map matching offers additional regu-
larization constraints that improve the map matching results
of individual trajectories — effectively using the “wisdom of
the collection” to compensate for noise and gaps in individ-
ual trajectories. Specifically, for a set of partially overlap-
ping trajectories, we enforce that the projected paths of their
overlapping regions coincide. Such a formulation implicitly
increases the sampling density of trajectories. Moreover,
the overlapping parts of these trajectories are jointly deter-
mined, which improves the robustness of the map match-
ing procedure. The multi-track idea was first seen in [5],

with the assumption that all trajectories are sampled from
the same underlying path. Our algorithm, designed to ap-
ply multi-track map matching on heterogeneous data, offers
more practical use on large-scale map matching applications.

1.1 Approach Overview
The input to our problem is a road map and a collection

of trajectories. The output consists of the projected paths
of the trajectories on the map. We tackle multi-track map
matching of heterogeneous trajectories in three main steps.

1. Segment Initialization: Extract a collection of road
segments S in the given map. These road segments
will be the building blocks of all projected paths.

2. Joint Segment Selection: Assign a segment from S to
each trajectory sample point so that all segments col-
lectively optimize some object function.

3. Map Matching using Selected Segments: Stitch the se-
lected segments of each trajectory into its projected
path.

The Joint Segment Selection step plays the key role in our
algorithm. We formulate this stage as solving a constrained
optimization problem. The variables are binary indicators
that specify whether a segment is selected for a particular
trajectory sample point. The objective function combines
a matching term, a stitching term, and a regularity term,
as illustrated in Figure 4. The matching term evaluates
the proximity (in terms of a distance metric to be defined)
between a segment and a trajectory in the neighborhood
of a sample point. The stitching term enforces that the
selected segments of each pair of trajectory sample points
are consistent. Last but not least, the regularity term, which
plays the data-driven role, forces more segments to be shared
among partially overlapping trajectories.

To effectively solve the proposed optimization problem in
the Joint Segment Selection step, we introduce latent vari-
ables to reformulate the objective function into a form that
is easier to optimize. This reformulation admits alternating
optimization, where the optimization task at each step can
be decoupled into small-scale optimization sub-problems, in-
cluding ones with close-form solutions. In practice, these
sub-problems can be solved in parallel, allowing us to pro-
cess hundreds of thousands of trajectories in a couple of
hours.

Another advantage of the proposed approach is its ability
to handle trajectories not present in the “training” dataset,
assuming that the training set contains sufficiently many
trajectories.

We have also created a benchmark for evaluating map
matching algorithms, including our own. The benchmark
data were sampled from a large collections of GPS traces
recorded by 8602 taxi cabs in Beijing, China, during May,
2009. Experimental results using the benchmark show that
the proposed approach outperforms existing single trajec-
tory map matching algorithms in matching accuracy.

1.2 Related Work
Map matching algorithms are generally categorized as in-

cremental or global algorithms. The former match portions
of a trajectory onto a path based on the local geometry. This
is also known as “online map matching” since it can gener-
ate vehicle paths on the fly as new samples become available.



(a) Input trajectories (b) Candidate search (c) Joint segment selection (d) Map matching by stitching selected segments

Figure 3: Workflow of data-driven map matching for two trajectories. The dotted lines in (b)-(d) represent
input trajectories. Solid-colored lines in (b) and (c) represent candidate segments for a trajectory point.

Such algorithms are often used in applications such as navi-
gation, where the sampling rate is relatively high (1-30s per
sample), but a trade off has to be made between accuracy
and the speed of computation. In contrast, global algorithms
find the globally optimal path after reading in complete tra-
jectories. Because of their offline nature, these algorithms
tend to focus on map matching accuracy and robustness.

One group of global algorithms is based on curve fitting
using Fréchet distance and its variants [7][8]. However, these
algorithms are often designed and work well only for densely
sample trajectories. Statistical models are popular tools for
handling uncertainty in trajectory data. In particular, Hid-
den Markov Model based algorithms [9][10] have proven to
recover accurate paths from relatively sparse trajectories. In
this method, the trajectory is treated as a sequence of noisy
observations of the true positions along the paths, modeled
as a Markov chain. The emission probability is found using
a Gaussian noise model around the observation, the transi-
tion probability is based on the topological and geometric
constraints on the map, and the matched path is the one
with maximum a posteriori probability. Other statistical
models such as Conditional Random Fields [11] have also
been applied to reduce the sampling bias in simple HMM
models.

Statistical methods can be considered a subset of the gen-
eral max-weight algorithms. In general, a candidate set is
determined for each observation, and each candidate is as-
signed a weight based on its offset from the observation and
topological fitness with candidates of neighboring samples.
Then the output is a sequence with the maximum weight.
Algorithms in this category include the shortest-path based
ST matching [12] and the interactive voting method [13].
Max-weight methods can often be adapted to online settings
using approximation techniques [14][15]. As an alternative
to point-wise matching, segment-based algorithms match
piecewise trajectory segments to path segments [16]. Our
proposed approach fits within the framework of segment-
based map matching.

Recent works on map matching often adopt data-driven
techniques to improve the matching result using historical
trajectories. One common application is determining the
parameters of the statistical models or the weight function,
using machine learning techniques [15][11]. This approach
makes it easier to fine tune the model, but it also has the
tendency of over-fitting the predefined model. In another ap-
proach presented in [17], historical trajectories are directly
processed into reference routes that can be queried to gen-
erate new routes. The algorithm is able to complete the

matching even with very sparse data. However, as the gen-
erated path is solely based on a fairly accurate reference
route database, it may fail at the case when a trajectory is
sampled from a path not in the database.

Although drawing information from large scale trajectory
data, the aforementioned methods only match a single sin-
gle trajectory at a time. They are referred as single-track
map matching algorithms in [5]. The focus of this work is
in multi-track map matching, where one matches a large
number of possibly sparse trajectories simultaneously to the
map. In [5], multiple sparse trajectories of the same route,
and with the same starting and ending positions are used to
produce an accurate path on the map. This method extracts
a global order on the sample points based on the partial
order defined by individual trajectories, then uses a single-
track map matching to produce the matched path.

1.3 Paper Organization
The first half of this paper is organized around the three

main steps of the algorithm. Section 2 introduces the for-
mal definition for road segments and explains how to extract
them from a road network; Sections 3 explains the joint seg-
ment selection procedure; Section 4 describes how to com-
pute the projected paths from selected segments for trajec-
tories both present and not present in the input dataset.

The second half focuses on the experimental evaluation of
the algorithm on a large collection of taxi trajectories (Sec-
tion 5). This is followed by a discussion on challenges and
future prospects of data-driven map matching in Section 6.

2. SEGMENT DEFINITION &
INITIALIZATION

The initial step of the proposed algorithm generates a col-
lection of road segments that represent all possible paths
within the map. We refer them as order-k-segments.

Defining k-segments. We define the road network (a.k.a.
map) M as a drawing of an oriented graph in R2, i.e., the
vertices of M represent intersections, and the edges of M
represent road segments that connect adjacent intersections.
Each road segment is represented as a polygonal curve.

Definition 1. Let ||ei|| denote the length of edge ei in
M. An order-k-segment (or simply k-segment) is a sequence
of s nonrepeating edges e1, . . . , es that satisfies

∑s−1
i ||ei|| <

k and
∑s

i ||ei|| ≥ k. i.e. The total length of a k-segment is
approximately k units.



Practically, we may also represent a k-segment as a se-
quence of vertices, and we say a point p is in segment s if
p is an endpoint of some edge ei in s. The choice of k usu-
ally depends on the data (See Section 5.2 for experimental
results on the effect of segment order). In this paper, we
typically use k = 3 kilometers (km).

With S we denote the set that collects all segments of
order k, while omitting k in the notation by considering it
as a constant. In practice, we also incorporate total turning
angles in the computation of segments to prevent repeating
edges. (See Section 2.)

Generating segments from a map. Below we introduce
a simple approach to obtain a good representation of seg-
ment collection S. Notice that this procedure only needs
to be done once per map, therefore it does not impact the
efficiency of the map matching algorithm.

For each vertex v in the map, we collect all k-segments
starting from v through traversing the relevant network con-
nected component in a breadth first search manner. Let p
be the path from v to a connected node u. We report a
k-segment when one of the following is true:

1. The total length of p is less than or equal to k, but
extending p by adding any of u’s outgoing edge makes
p’s length exceed k.

2. The total turning angle exceeds 2π.

The second criterion effectively reduces loops and self in-
tersection. It also penalizes sharp turns by forcing such seg-
ments to be shorter, thus less likely to be selected in the
next step.

3. JOINT SEGMENT SELECTION

3.1 Problem formulation
In this section, we describe in detail the formulation of

joint segment selection as an optimization problem. We be-
gin with defining a distance metric between a segment and
a trajectory point, followed by explaining the objective and
constraints in the proposed formulation.

Definition 2. A trajectory t = v1 · · ·v|t| is an ordered

sequence of points in R2. With |t| we denote the cardinality
of t.

Each trajectory is considered a sparse and noisy sampling
of an underlying path pt in mapM. Note that pt may start
and end in the middle of edges of M.

Definition 3. The distance between a segment s and a
trajectory sample point vt,i is

dcurve(s,vt,i) = max

{
d(vt,i, s),max

p∈s
d(p, t)

}
,

where d(p, c) denotes the Euclidean distance between point
p and its closest point in piecewise linear curve c.

While it is straightforward to use the distance between a
point and a segment, d(vt,i, s), in the map matching opti-
mization, we add a regularizing term maxp∈sd(p, t) to re-
flect the consistency between the segment and the whole

 

 

Optimal Non−optimal

Optimal

Non−optimal 0 100 200 300
0

10

20

30

40

50

60

70

Segments

F
re

q
u
en

cy

 

 

Optimal

Non−optimal

(a) Matching (b) Stiching (c) Regularity

Figure 4: Illustration of the three objective terms
in joint segment selection. (a) Segments in darker
colors are closer to the input trajectory (dotted blue
line) than segments in lighter colors, hence having
higher matching scores. (b) The segment assign-
ment in the upper figure has higher stitching score
than the one in the lower figure, since the stitch-
ing term favors segments of consecutive trajectory
points that are consistent. (c) This figure displays
the frequency drop-off of 300 most popular segments
in two different segment assignments. Comparing to
the blue curve, the red curve has a steeper fall-off
that signifies a higher regularity score. i.e. only
a small number of segments are selected among all
input trajectories.

trajectory. If maxp∈sd(p, t) is very large, there is a good
chance that the segment is globally incompatible to the tra-
jectory, even if the evaluated point dt,i is close to the seg-
ment, indicating local compatibility. We therefore penalize
such options by taking the maximum of the two distances.

Given the input trajectories T = {t = (vt,1 · · ·vt,|t|)} and
the set of all k-segments S in M, we solve a constrained
optimization problem to jointly select a candidate segment
st,i ∈ S for each trajectory sample point vt,i. In the follow-
ing, we first describe how to parametrize the optimization
variables, i.e., the selected segments of each trajectory. Then
we present the expression of each term in the optimization
objective.

Variable parametrization. We introduce binary indica-
tor variables xst,i ∈ {0, 1} to specify whether a segment s ∈ S
is selected for a trajectory sample point vt,i, 1 ≤ i ≤ |t|, t ∈
T , i.e., xst,i = 1 if s is the selected segment of vt,i, and
xst,i = 0 otherwise.

For each vt,i, we filter out segments with a large distance
in order to reduce the number of indicator variables: Let
dmax be an upper threshold for the allowed distance of tra-
jectory point and matched segment; we set dmax = 200m
in this paper. Using classical range search data-structures
such as quad-trees

St,i = {s | s ∈ S, dcurve(s,vt,i) < dmax},

Given the candidate sets, we remove all binary indicators
xst,i from the variable set if s /∈ St,i. With the remaining
indicator variables, we formulate the constraint that exactly



(a) (b) (c)

Figure 5: Sample k-segments from the map of Bei-
jing. Segments a and b are consistent, while Seg-
ment c is not consistent with either a or b, despite
of having overlapping edges with both.

one candidate segment can be selected as a linear equality:∑
s∈St,i

xst,i = 1. (1)

Matching term. The matching term fmatch prioritizes the
fact that the selected segments are close to the corresponding
sub-trajectories. Using segment indicators, we formulate the
matching term as

fmatch =
∑
t∈T

|t|∑
i=1

∑
s∈St,i

dcurve(s,vt,i)x
s
t,i. (2)

Stitching term. The stitching term fstitch measures the
consistency of the selected segments of each input trajec-
tory t ∈ T . First we introduce consistency, an asymmetric
relation for a segment pair. (See Figure 5.)

Definition 4. A segment s is consistent with another
segment s′, or equivalently, they can be merged into a single
segment of order ≥ k, if there exists three segments s1, s2
and s3 such that

s = s1s2, s′ = s2s3.

Using the consistency relation, we define the stitching
score stitch(s, s′) between two segments s ∈ St,i and s′ ∈
St,i+1:

stitch(s, s′) =

{
1− length(s∩s′)

length(s∪s′) s is consistent with s′

1 otherwise

In other words, stitch(s, s′) < 1 if and only if s and s′ are
consistent (i.e., they can be merged into a segment), in which
case stitch(s, s′) specifies their overlap ratio. We then define
fstitch by summing up the stitching scores of all pairs of
neighboring selected segments:

fstitch =
∑
t∈T

|t|−1∑
i=1

∑
s∈St,i

∑
s′∈St,i+1

stitch(s, s′) xst,ix
s′
t,i+1. (3)

Regularity term. Merely optimizing the matching term
and the stitching term will match each trajectory in isola-
tion. We thus introduce a regularity term fregularity that
counts the total number of selected segments among all tra-
jectories. The resulting objective encourages segments to be
shared by partially overlapping trajectories.

Let n(s) =
∑
t∈T

|t|∑
i=1

xst,i be the number of times that a seg-

ment s ∈ S is selected. A straight-forward definition of the

regularity term is given by
∑

s∈S Id(n(s) > 0), where indi-
cator function Id(n(s) > 0) = 1 if n(s) > 0 and Id(n(s) >
0) = 0 otherwise. However, such an expression is hard to
optimize.

Our formulation is based on the fact that the sum of n(s)
over all segments is a constant:

∑
s∈S

n(s) =
∑
s∈S

∑
t∈T

|t|∑
i=1

xst,i =
∑
t∈T

|t|.

We propose to minimize a concave function over n(s), which
prioritizes the sparsity in n(s) and thus implicitly minimizes
the number of selected segments. In our implementation, we
choose the natural logarithm function and define fregularity
as

fregularity =
∑
s∈S

log(n(s)) =
∑
s∈S

log(
∑
t∈T

|t|∑
i=1

xst,i + δ), (4)

where δ is introduced to make fregularity well-defined. In
practice, we set δ = 10−4.

Formulation. Combining Equations 1-4, we arrive at the
following constrained optimization formulation for joint seg-
ment selection:

min
xs
t,i∈{0,1}

∑
t∈T

( |t|∑
i=1

∑
s∈St,i

match(s, vt,i)x
s
|t|,i

+ λ

|t|−1∑
i=1

∑
s∈St,i

∑
s′∈St,i+1

stitch(s, s′)xst,ix
s′
t,i+1

)

+ µ
∑
s∈S

log(
∑
t∈T

|t|∑
i=1

xst,i + δ)

s.t.
∑

s∈St,i

xst,i = 1, ∀t ∈ T , 1 ≤ i ≤ |t|. (5)

where

match(s, vt,i) =

|t|∑
i=1

∑
s∈St,i

dcurve(s,vt,i)

The weights λ and µ specify the importance of the stitch-
ing term and the regularity term, respectively. In this paper,
we choose λ = 10 and µ = 0.5 for all the experiments.

3.2 Numerical Optimization
Directly solving Equation (5) is hard since i) the number

variables is large, and ii) all variables have integer values.
Instead, we reformulate Equation (5) by introducing latent
variables, and optimize both the original variables and the
latent variables in an alternating manner. In the following,
we first explain the derivation of the reformulation, then
discuss the alternating optimization strategy and its conver-
gence behavior.
Reformulation. The key idea of the our new formulation

is to rewrite the term log(
∑
t∈T

|t|∑
i=1

xst,i + δ) as the solution of

a minimization problem.

Proposition 5. The term log(
∑
t∈T

|t|∑
i=1

xst,i+δ) admits the



Figure 6: Convergence of k-segments in the first 3 iterations of alternative optimization on a toy example.
We randomly generated 100 trajectories crossing an intersection on a grid map from different directions. The
matched segments converge to the skeleton of the intersection in 3 iterations.

following expression:

log(
∑
t∈T

|t|∑
i=1

xst,i + δ)

= min
ys

(
ys
(∑
t∈T

|t|∑
i=1

xst,i + δ
)
− log(ys)

)
− 1. (6)

Proof. By setting

∂(ys
(∑
t∈T

|t|∑
i=1

xst,i + δ
)
− log(ys))/∂ys = 0,

we observe a global minimum at

ys = 1/(
∑
t∈T

|t|∑
i=1

xst,i + δ). (7)

and the claimed equality can easily be verified.

Substituting (6) into (5), we introduce latent variables ys,
for all s ∈ S to be optimized together with {xst,i}. Equa-
tion (5) is reformulated into the following:

min
xs
t,i∈{0,1},ys

∑
t∈T

( |t|∑
i=1

∑
s∈St,i

(
match(s, vt,i) + µys

)
xst,i

+ λ

|t|−1∑
i=1

∑
s∈St,i

∑
s′∈St,i+1

stitch(s, s′)xst,ix
s′
t,i+1

)
+ µ

∑
s∈S

(δys − log(ys))

s.t.
∑

s∈St,i

xst,i = 1, ∀t ∈ T , 1 ≤ i ≤ nt. (8)

Alternating Optimization We solve (8) by alternating
the optimization of variables {xst,i} with the optimization
of variables {ys}. As variables xst,i associated with different
trajectories are decoupled, variables ys of different s also
get decoupled. Hence the alternating optimization at each
step is equivalent to solving independent optimization sub-
problems for each trajectory or each segment. The details
are described as follows:

1. Optimizing {xst,i}. When ys, s ∈ S are fixed1, solv-
1At the first iteration, we set ys = 0, s ∈ S

ing (8) is equivalent to solving the following optimiza-
tion problem for each trajectory t ∈ T :

min
xs
t,i∈{0,1}

|t|∑
i=1

∑
s∈St,i

(
match(s, vt,i) + µys

)
xst,i

+ λ

|t|−1∑
i=1

∑
s∈St,i

∑
s′∈St,i+1

stitch(s, s′)xst,ix
s′
t,i+1

s.t.
∑

s∈St,i

xst,i = 1, 1 ≤ i ≤ nt. (9)

The latter is a special quadratic integer program where
the quadratic terms are defined on consecutive candi-
date sets. It is well known that such problems can be
efficiently solved using dynamic programming [9].

2. Optimizing {ys}. When {xst,i} are fixed, solving (8) is
equivalent to solving the following optimization prob-
lem for each segment s ∈ S:

min
ys∈R+

ys(
∑
t∈T

|t|∑
i=1

xst,i + δ)− log(ys). (10)

According to Proposition 5, it is clear that the optimal
solution to (10) is given by

ys = 1/(
∑
t∈T

nt∑
i=1

xst,i + δ).

Let yks denote the value of ys at the kth iteration. We stop
the alternative optimization when the following condition is
met.

mean
{
||yks − yk+1

s ||
}

s∈S
≤ 10−4 .

In practice, the algorithm often terminates within 8-9 itera-
tions.

We can interpret the above alternating optimization strat-
egy as follows. At each iteration, we first perform map-
matching for each trajectory independently. Then we up-
date a frequency score of each segment, i.e., ys, used to pri-
oritize segments in the map matching step. As a result,
segments that are frequently used in the previous iteration
are prioritized in the current iteration. Experiments confirm



(a) (b) (c)

Figure 7: This figure illusrates the two-step process
of stitching selected segments. From (a) to (b), an
additional segment (red) is added to connect the se-
lected segments. From (b) to (c), we generate the
projected path (red) by tracing the selected seg-
ments from the starting point to the ending point.

that the number of selected segments decreases during this
alternating process, at a speed controlled by parameter µ.
In the end, only a fraction of segments are selected for map
matching.

4. MAP MATCHING USING SELECTED
SEGMENTS

The final step of data-driven map matching is to compute
the projected path from the set of selected segments. We
will consider two scenarios: i) Matching input trajectories;
ii) Matching additional trajectories not present in the input
dataset.
Matching Input Trajectories. Finding the projected
path for input trajectories is simply stitching the selected
segments for the sample points in each trajectory t.

As illustrated in Figure 7, we first build a segment graph
where two segments s, s′ are connected if they are consistent
with each other, with edge weight stitch(s, s′). The seg-
ment merging process involves two passes over t’s selected
segments:

The first pass finds pairs of disconnected segments si and
si+1, then adds between them the shortest path from si to
si+1 in the segment graph. This can be done using A∗ search
starting at si.

For the second pass, consider the connected subgraph G′

consisting of all selected segments and segments added in
the first pass. We trace a shortest path from si to si+1

to eliminate extraneous edges. The final path pt will be a
sequence of non-repeating edges on the shortest path.

Matching Additional Trajectories. The joint segment
selection process detailed in Sections 3 can be considered
as a training stage for map matching additional trajectories
within the map. After the alternative optimization step,
we have learned a collection of k-segments that best rep-
resent regular structures in all training trajectories, with
respective weight y∗s . Assuming there are sufficiently many
training trajectories covering the entire map, we can reuse
the extracted k-segments to perform a segment-based single-
track map matching on trajectories not in the training set,
as illustrated in Figure 9.

Let S∗ be the collection of all k-segments matched to the
original trajectory set T . To find the underlying path of
trajectory t /∈ T , we first compute the candidate segments
of every sample point vt,i on t in S∗.

S∗t,i = {s | s ∈ S∗, dcurve(s,vt,i) < dmax},

+++ ⇒⇒⇒

Figure 9: Map matching additional trajectories.
Left: k-segments obtained from the joint segment
selection step. Lighter segments have higher weights
than the darker ones. Center: The trajectory to be
matched; Right: A segment-based single-track map
matching is applied to the new trajectory.

We then solve Equation 9 for the optimal candidate assign-
ment xi,j , where variables ys are substituted with learned
parameters y∗s . The final path is obtained using the segment
stitching method described earlier.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup
We created a benchmark dataset for evaluating the perfor-

mance of map matching algorithms. The trajectories used in
the benchmark were taken from the 2009 Beijing Taxi Cab
dataset [18]. This dataset contains the GPS traces of 8602
taxi cabs in Beijing, China, collected during an one-month
period in May, 2009. (See Figure 11.) The sampling density
of these trajectories ranges from 60 seconds to 5 minutes.
For our benchmark dataset, we used 121,737 trajectories of
2-minute sampling intervals. We obtained the map data
from Open Street Map [19]. The map region covers all tra-
jectories ranges between 116.148◦ - 116.613◦ longitude and
39.788◦ - 40.096◦ latitude.

We construct the benchmark dataset from 100 randomly
selected sparse trajectories. To obtain ground truth map
matching results of these trajectories, we recruited four vol-
unteers who had 5+ years of driving experience in Beijing to
manually trace the path on the map. As shown in Figure 10,
each volunteer was given an interactive application, which
showed the input trajectory and a map of the surround-
ing area. The purpose of this activity is to simulate how a
real driver would choose the path based on their knowledge
about the road scenario. Each volunteer was responsible for
25 trajectories, so that they brought a level of diversity to
the ground truth.

As a baseline comparison, we implemented the HMM based
map matching algorithm described in [9]. We chose this al-
gorithm since it is often cited for its robustness under sparse
data, while other algorithms we attempted did not perform
notably better than the baseline algorithm with our dataset.

We evaluate the performance of a map matching algorithm
by computing the distances between the resulting projected
paths and the ground truth paths. Specifically, we com-
pute the percentage of vertices whose minimum Euclidean
distances to the corresponding ground truth path is below
some distance threshold ε. We then plot p(ε) with respect
to ε, which ranges between 0 and 20 meters.



Figure 8: We show the difference between the map matching results of SMM (red) and data-driven map
matching (blue) at intersections and curved roads. The bottom row displays the GPS sample points (black)
and the manually matched path (green). In most cases SMM prefers ”cutting the corner” while data-driven
map matching tends to follow larger, popular roads, though the distance travelled along the two paths are
very similar. This behavior conforms with the general observation that drivers prefer to stay on the same,
faster route for as long as possible.

Figure 10: Examples of manually labeled ground
truth paths (left) in reference to the Open Street
Map image (right). Taxi trajectories and the ground
truth paths are colored in black and red, respec-
tively.

5.2 Joint Segment Matching Discussion
Figure 8 and Figure 12 compare the performance of the

proposed algorithm and the baseline single-track map match-
ing algorithm. Overall, the performance of the proposed ap-
proach is better than the baseline algorithm for all tested
ranges of ε.

When ε = 0, p(ε) is the percentage of exact matched
points in the projected path, which we refer as map match-
ing accuracy. Figure 12(a) shows that the accuracy of data
driven map matching is 0.86, compared to 0.77 for the base-
line.

When there are multiple plausible paths between two sam-
ple points, the proposed algorithm tends to find the correct

Figure 11: 200 sample trajectories from the Beijing
Taxi Cab Dataset drawn on top of the road network.

one that is agreed on by the majority of the trajectories.
In contrary, the baseline algorithm determines the projected
path independently, which tends to produce a less consistent
result. In the following, we discuss in detail the performance
of the proposed algorithm from a variety of perspectives.
Number of selected segments. The number of segments
created during the segment generation stage is 7,014,231.
The first iteration reduces this number by 95% to 345,617.
The number of selected segments after 4 iterations is 121,756,



0 50 100
0.7

0.8

0.9

1

ε (meters)

p
(ε

)

 

 

Data−driven

Baseline

0 20 40 60 80 100
0.7

0.8

0.9

1

ε (meters)

p
(ε

)

 

 

k = 3.0km

k = 1.0km

k = 4.0km

k = 2.0km

(a) (b)

0 100 200 300 400
0.7

0.8

0.9

1

ε (meters)

p
(ε

)

 

 

mu =1

mu = 10

mu = 0.1

0 100 200 300 400
0.7

0.8

0.9

1

ε (meters)
p
(ε

)

 

 

110k

10k

1k

Baseline

(c) (d)

Figure 12: (a) Comparison of map matching accuracy in reference to the baseline method, with default
parameters. (b) Segment order k and map matching accuracy. (c) Parameter µ and map matching accuracy
(d) Number of input trajectories and map matching accuracy

1.73% of the original segment count. This verifies that the
number of selected segments is indeed small.
Segment order. Figure 12(b) compares the results of set-
ting k to 1-4 kilometers at 1km increment.We can see that
using longer segments yields better results. On the other
hand, the number of segments increases drastically as k in-
creases, which leads to higher computation costs.
Coefficient µ. The parameter µ controls the data-driven
effects. Figure 12(c) compares the results of setting µ =
0.1 and µ = 10 with the default value of µ = 1. We find
that when µ = 0.1, the performance of our algorithm is
close to that of the baseline algorithm. This is expected
since the selected segments are determined for each input
trajectory independently. On the other hand, when µ = 10,
the performance also drops. This is due to the fact of over-
smoothing, i.e., where individual features of each trajectory
are filtered.
Data helps. More input trajectories should help improve
the quality of the extracted popular segments. We have
tested our algorithm when only using 1K and 10K trajecto-
ries, as shown in Figure 12(d). In most cases, the benchmark
trajectories are included in the test set. We found that the
performance increases gradually with more input trajecto-
ries available.
Timing. The total running time on the whole dataset with
8 iterations is 8 hours and 21 minutes on a machine with
3.2GHz quadcore CPU. It took approximately 0.021 seconds
on a single core to generate the candidate segments per tra-
jectory point. The map matching process at each iteration
takes 0.005 seconds.

Figure 13: Additional trajectories and map match-
ing accuracy.

5.3 Matching Additional Trajectories
Figure 13 shows the result of using the learned k-segments

to match additional trajectories. In our experiment, we re-
move the benchmark trajectories from the input trajectory
set and apply the proposed algorithm to obtain the set of se-
lected segments as well as their optimized values of ys. Then
we perform single-track map matching for each trajectory in
the benchmark set using the learned segments, as described
in Section 4. Compared with the standard setting, we found
that the performance of matching the labeled trajectories
as additional trajectories is very similar to that of including
them into training phase. Moreover, both of them are bet-



ter than the baseline algorithm. This shows the proposed
algorithm has good generalization performance. Time-wise,
the map matching process of one additional trajectory takes
0.03 seconds. This makes it appropriate for real-time appli-
cations.

6. CONCLUSIONS
We have presented a multi-track map matching algorithm

that discovers and exploits regular structures exhibited in
large collections of GPS traces. The algorithm jointly selects
a set of k-segments that minimizes both the matching error
and the number of unique segments used in all matchings.
It then merges the selected segments into paths. We have
applied the algorithm on a collection of over 120,000 taxi
trajectories, and tested the matching accuracy on a manu-
ally labeled benchmark.

Here are a few important aspects that we aim to address
in future work.
Temporal information. The current algorithm does not
use any temporal information of the trajectories. In reality
the popularity of segments can vary a lot during different
times of day, and different days of a week. For instance,
drivers may choose driving on the side roads during peak
hours to avoid traffic, and the traffic pattern in a city may
be different between weekdays and weekends.
Curve-to-point distance In Section 3 we gave a heuris-
tic definition of the curve-to-point distance dcurve that works
reasonably well in our tests. Nevertheless we need a more
meaningful distance metric for dcurve, from which we theo-
retically justify the effectiveness of data-driven map match-
ing. One candidate measure is the Fréchet distance that
uses both position and order information of the curve.

Acknowledgments
The authors acknowledge support of ARO grant W911NF-
07-2-0027, NSF grants CCF-1011228 and CCF-1161480, a
Google Research award and by the Max Planck Center for
Visual Computing and Communication.

7. REFERENCES
[1] Y. Zheng, Y. Liu, J. Yuan, and X. Xie. Urban

computing with taxicabs. In Proc. 13th International
conference on Ubiquitous computing (UbiComp ’11),
pages 89–98, 2011.

[2] P. S. Castro, D. Zhang, and S. Li. Urban traffic
modelling and prediction using large scale taxi GPS
traces. In Pervasive Computing, volume 7319 of
Lecture Notes in Computer Science, pages 57–72.
Springer Berlin Heidelberg, 2012.

[3] X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman,
and Y. Zhu. Mining large-scale, sparse GPS traces for
map inference: comparison of approaches. In Proc.
18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’12),
pages 669–677, 2012.

[4] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti.
Wherenext: a location predictor on trajectory pattern
mining. In Proc. 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD ’09), pages 637–646, 2009.

[5] A. Javanmard, M. Haridasan, and L. Zhang.
Multi-track map matching. In Proc. 20th International

Conference on Advances in Geographic Information
Systems (GIS ’12), pages 394–397, 2012.

[6] M. C. González, C. A. Hidalgo, and AL. Barabási.
Understanding individual human mobility patterns.
Nature, 453(7196):779 – 782, 2008.

[7] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On
map-matching vehicle tracking data. In Proc. 31st
International Conference on Very Large Databases
(VLDB ’05), pages 853–864, 2005.

[8] D. Chen, A. Driemel, L. J. Guibas, A. Nguyen, and
C. Wenk. Approximate map matching with respect to
the Fréchet distance. In Proc. 13th Meeting on
Algorithm Engineering and Experiments (ALENEX
’11), pages 75–83, 2011.

[9] P. Newson and J. Krumm. Hidden Markov map
matching through noise and sparseness. In Proc.17th
ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (GIS
’09), pages 336–343, 2009.

[10] R. Raymond, T. Morimura, T. Osogami, and
N. Hirosue. Map matching with hidden Markov model
on sampled road network. In Proc. 21st International
Conference on Pattern Recognition (ICPR ’12), pages
2242–2245, 2012.

[11] T. Hunter, R. Herring, P. Abbeel, and A. M. Bayen.
The path inference filter: model-based low-latency
map matching of probe vehicle data. Computing
Research Repository, abs/1109.1966, 2011.

[12] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and
Y. Huang. Map-matching for low-sampling-rate GPS
trajectories. In Proc. 17th ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems (GIS ’09), pages 352–361, 2009.

[13] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and GZ. Sun.
An interactive-voting based map matching algorithm.
In Proc. 11th International Conference on Mobile
Data Management (MDM ’10), pages 43–52, 2010.

[14] C. White. Some map matching algorithms for personal
navigation assistants. Transportation Research Part C:
Emerging Technologies, 8(1-6):91–108, 2000.

[15] C. Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif,
A. Oran, and P. Jaillet. Online map-matching based
on hidden Markov model for real-time traffic sensing
applications. In Proc. 15th IEEE International
Conference on Intelligent Transportation Systems
(ITSC ’12), pages 776–781, 2012.

[16] S. S. Chawathe. Segment-based map matching. In
IEEE Intelligent Vehicles Symposium (IV ’07), pages
1190–1197, 2007.

[17] K. Zheng, Y. Zheng, X. Xie, and X. Zhou. Reducing
uncertainty of low-sampling-rate trajectories. In Proc.
28th IEEE International Conference on Data
Engineering (ICDE ’12), pages 1144–1155, 2012.

[18] Taxi Trajectory Open Dataset.
http://sensor.ee.tsinghua.edu.cn, Tsinghua University,
Beijing, China, 2009.

[19] Open Street Map. www.openstreetmap.org.


