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Abstract. Among symptoms of cerebral palsy (CP), the degree of hand
function impairment in young children is hard to assess due to large
inter-personal variability and differences in evaluators’ experience. To help
design better treatment strategies, accurate identification and delineation
of manual ability injury level is a major clinical concern. Periventricular
leukomalacia (PVL), a form of brain lesion in periventriular white mat-
ter in premature infants, is a leading cause of CP and have clinical asso-
ciations with motor function injuries. In this paper, we exploit the cor-
relation between PVL lesion segmentation and manual ability classifica-
tion (MAC) to improve the identification performance of both tasks for
T2 FLAIR MRI scans. Particularly, we propose a semi-supervised multi-
task learning framework to jointly learn from heterogeneous datasets. Two
clinically related auxiliary tasks, lesion localization and ventricle segmen-
tation, are also incorporated to improve the classification accuracy while
requiring only a small amount of manual annotations. Using two datasets
containing 24 labeled PVL samples and 87 labeled MAC samples, the pro-
posed model significantly outperforms single-task methods, achieving a
dice score of 0.607 for PVL lesion segmentation and 84.3% accuracy for
manual ability classification.

Keywords: Heterogeneous multi-task learning · Semi-supervised
learning · PVL lesion segmentation · Manual ability classification ·
Computer-aided diagnosis

1 Introduction

Cerebral palsy (CP) is a non-progressive interference to the developing brain, caus-
ing a range of motor function disorder among young children [11]. Among various
CP symptoms, hand function impairment have large inter-personal variations and
would adversely affect patients’ self-care ability in their daily life [16,21]. To help
develop better treatment strategy, accurate identification and delineation of injury
level in early childhood is a major clinical concern [21]. Several examination scales,
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such as the Manual Ability Classification System (MACS) and the Assisting Hand
Assessment (AHA) have been frequently used to assess the degree of hand function
impairment in children with CP [1]. However, an individual’s performance may
vary across different scales and the accuracy of assessment relies on the experience
of the evaluator [15]. Furthermore, it is difficult to perform detailed assessments
during infancy due to incomplete development.

Recent clinical studies have attempted to use MRI, a more objective and
quantitative measurement tool to reflect motor function. For instance, [20] uses
diffusion weighted MRI to explore the correlation between damaged white matter
pathways and specific motor functions such as upper limbs functions. Contrary to
clinical observations, the reported correlations were mostly low to moderate. On
the other hand, periventricular leukomalacia (PVL), a form of ischemic brain
white matter injury in prematured infants have been shown to be frequently
associated with motor function disorder in children with CP [9,12]. Hence we
aim to utilize the relationship between PVL and manual ability in children with
CP to improve the identification of PVL and the classification of manual ability
level based on T2-Weighted MRI data.

Previous works on brain MRI lesion segmentation generally focused on
extracting handcrafted image features, including modal intensities, tissue prob-
abilities, multi-scale annular filter for blobness detection [10] or patient features
like age and gender for computer-aided disease diagnosis [19]. Research that
focus on PVL segmentation and manual ability classification, however, seem rare
except for [25], which only uses handcrafted features that is hard to generalize
to new datasets. Recently, deep learning based methods that can automatically
learn informative features are extensively used to tackle certain brain MRI lesion
segmentation tasks [27]. Multi-task learning, a learning paradigm that trains two
or more related tasks with shared parameters or features, is a common approach
for automatically incorporating auxiliary information in neural networks. Sev-
eral studies have adopted multi-task learning for MRI image processing tasks
[3–5]. However, most of the deep learning methods rely on having large amounts
of annotated training data, which is not a practical solution due to the high cost
obtaining expert annotations.

To solve the aforementioned challenges, we propose a semi-supervised multi-
task framework for jointly segmenting the PVL lesions and classifying manual
ability in a small data setting, as shown in Fig. 1. In addition to the two tar-
get tasks, we consider two medically related auxiliary tasks to help improve the
performance of target tasks: lesion localization (LL) and ventricle segmentation
(VS). The former identifies the coordinate of each lesion center, as clinical evi-
dence shows that PVL lesions are always detected regularly in specific locations
like the thalamus and basal ganglia. The latter is also related to PVL as the
volume of the ventricles changes due to white matter injuries. One advantage
of this framework is that it only requires the data for each task to be partially
labeled. Information learned from known labels will propagate to unlabeled data
during training by using pseudo-labeling. We show in the experiment that, hav-
ing only 10 out of 80 samples with ventricle annotations is sufficient to improve
the target task performance.
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Fig. 1. Illustration of SHMN framework. Tasks outlined in red are the target tasks,
those in green are the auxiliary tasks. (Color figure online)

The main contributions of this work are as follows:

1. We show that PVL lesions on MRI images does correlate with the manual
ability level of CP patients.

2. We propose a novel deep learning framework, named Semi-supervised Hetero-
geneous Multi-task Network (SHMN), that can jointly learn to perform het-
erogeneous medical imaging tasks including segmentation, localization and
classification. It effectively uses the correlation among PVL lesion condition,
ventricle shape and MA level to improve the performance of manual ability
classification and PVL segmentation based on MRI data.

3. We adopted an effective semi-supervised algorithm that utilizes unlabeled
data in auxiliary tasks to reduce dependency on manually annotated data.

2 Materials and Method

2.1 Data and Preprocessing

Two private datasets are used in our research. Dataset1 contains 24 T2 FLAIR
MRI images with PVL lesion annotation and Dataset2 contains 87 T2 FLIAIR
MRI scans with manual ability labels. For all MRI data, participants were identi-
fied through a medical record management system of the First Affiliated Hospital
of Xi’an Jiaotong University. Brain images were captured using GE SignaHDxt
3.0T magnetic resonance scanner (GE Healthcare, Milwaukee, Wisconsin, USA)
and 8-channel head coil.

Dataset1 is captured from PVL patients between 19 to 28 months. Although
PVL mostly occurs in newborns, premature infants younger than 1 year old
often cannot tolerate MRI examinations, therefore we use MRI images of infants
between 1–2 years old who are still in the relatively early stage of PVL. Dataset2
is captured from CP patients with MA tests between 1–12 years old. These
children are older since CP is commonly developed from PVL and can only be
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diagnosed when children are old enough to perform certain physical tasks. Our
study uses joint training to learn a better model that predicts MA level based
on MRI images, which is a novel design.

PVL was characterized by white matter hyperintensities with/without tissue
reduction in periventricular and was manually delineated on each slice of the
patient’s T2-FLAIR images by a trained rater (HJ) and reviewed by an expe-
rienced pediatric neuroradiologist (LH). ITK-SNAP [26], a software that allows
simultaneous view of the brain on axial, coronal, and sagittal planes was used
for manual segmentation.

Manual ability was classified using the Manual Ability Classification System
(MACS). MACS is an international system to classify a child’s ability of handling
objects in daily activities [8]. MACS measures five levels of the manual abilities
of children with CP. Level I indicates the best while level V indicates the worst
level of manual ability. The specific assessment steps were described as the prior
protocol [18]. All the participants were classified into two groups according to
MACS levels, level I–II as mild injury group and level III–V as severe injury
group.

We automatically create labels for Lesion Localization as follows: extract the
topological structure of the lesion shape from the binary segmentation mask by
outermost border following [23] and compute the center of mass using spatial
moments.

All MRI images used in experiments are preprocessed via a standard pipeline:
(i) Images are transformed into the same coordinate system by FSL FLIRT [22].
(ii) Skull stripping is performed to remove the redundant parts. (iii) Bias field
correction is conducted using ANTs [2].

2.2 Network Architecture

Since medical images commonly encompass three dimensions, we choose 3D U-
Net [6] for as our base model. The framework resides on a modified version of
U-Net [14], which deviates from the original architecture in that it replaces ReLU
activation functions with leaky ReLUs and uses instance normalization [24]
instead of the more popular batch normalization [13]. Figure 2 shows the archi-
tecture of the proposed SHMN model which jointly learns a common encoder
for all target and auxiliary tasks. The correlation among these tasks enables us
to assume that their discriminative features lie in a common multi-scale feature
space, represented by the encoder network. The model takes input data through
one common encoder and then branch out to perform different tasks through cor-
responding decoders. Meanwhile, our data-driven framework incorporates semi-
supervision into the learning procedures to make it few-shot friendly and reduce
cost of expert annotation.
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Fig. 2. Architecture of the multi-task semi-supervised model. The purple blocks rep-
resent the shared backbone for extracting features, and the orange and green branches
are the task-specific decoders for the target tasks and auxiliary tasks, respectively.
(Color figure online)

As shown in Fig. 2, the input of the network contains 182 × 218 × 182 MRI
image patches with Mcls label (class of manual ability), Pseg label (PVL lesions
annotation), Lloc label (density map) and Vseg label (ventricle annotation) while
the target output includes the classification of manual ability and segmentation
mask of PVL lesions. The common encoder uses two plain convolutional lay-
ers between pooling in each block to extract the latent features from the given
images and down-samples the resolution by using the pooling technique and
the respective branches receive the feature maps from the bottom. In the Mcls

branch there is a sequence of two fully connected (FC) layers. We take the fea-
ture maps as the input of the FC1 followed by a rectified linear unit (ReLU)
activation function and the output of FC1 as the input of the FC2 followed by a
sigmoid activation function to predict the class probability. When the probabil-
ity is greater than 0.5, we classify the sample into severe injury group. For other
branches, decoders take transposed convolution operations and recombines the
semantic information with higher resolution feature maps obtained directly from
the encoder through skip connections. As Vseg aims to make full use of those
unlabeled MRI data, which can be acquired easily in practice, we therefore mod-
ify the regular decoder to predict the pseudo-label for each unlabeled sample in
the fine-tuning phases [17]. Due to the large image size and memory constraints
we set a batch size of 2. We use the Adam optimizer with an initial learning rate
of 3e-4 and set it to decrease periodically if the losses do not improve enough. The
network is trained in a semi-supervised fashion with labeled and unlabeled data
simultaneously. For unlabeled samples, pseudo-Labels recalculated after every
weights update are used for the modified loss function of supervised learning
task. The training procedure can be mathematically described as follows:
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Let X 1 =
{
X1

n

}N1

n=1
denotes the training set in Dataset1 and X 2 =

{
X2

n

}N2

n=1
denotes the training set in Dataset2. We define the labels of two MAC groups
(mild and severe) as ymcls

= {ymcls
n }N1

n=1, PVL lesion segmentation as ypseg
=

{
y
pseg
n

}N2

n=1
, PVL lesion localization as yploc

= {yploc
n }N2

n=1, and ventricle segmen-

tation as yvseg
=

{
y
vseg
n

}N1

n=1
. During training, coefficients of all tasks are equally

set to 1 as our work mainly focuses on the multi-task framework, however we’ll
explore the coefficients of different tasks in future work.

LSHMN = λmcls
Lmcls

+ λpseg
Lpseg

+ λploc
Lploc

+ λvseg
Lvseg

(1)

Specifically, task Mcls is trained with the cross-entropy loss as follows:

Lmcls
= −[ymcls

log(ŷmcls
) + ε(1 − ymcls

) log(1 − ŷmcls
)] (2)

where ε is the bias of positive examples to negative examples, which can increase
the penalty for misclassification of positive examples.

Task Pseg is trained with a combination of dice and cross-entropy loss,
Lpseg

= LCE + Ldice. The dice loss function here is an adaptation of the variant
proposed in [7]:

Ldice = −2
∑

i∈I oivi∑
i∈I ui +

∑
i∈I vi

(3)

where o is the softmax output of the network and v is a one hot encoding of the
ground truth segmentation map ypseg

and i ∈ I is the number of pixels in the
training batch.

As for task Vseg, in order to provide pseudo-labels for unlabeled samples, we
select the class with maximum predicted probability for each unlabeled sample.

yc′
vseg

=
{

1 if c = argmaxc′ ŷc′
vseg

0 otherwise
(4)

and we can add the pseudo-label to the unlabeled data and update our dataset
to train with the loss function:

Lv�
seg

= α(t)
C∑

c=1

Lvseg

(
yc′
vseg

, ŷc
vseg

)
(5)

where α(t) is a coefficient balancing labeled data and pseudo-labeled data to
maximize benefit of the unlabeled data.

α(t) =

⎧
⎪⎨

⎪⎩

0, t < T1;
t−T1
T2−T1

αf , T1 ≤ t < T2;
αf , T2 ≤ t.

(6)

Task Vseg is trained with standard binary cross-entropy loss while task Ploc

is trained with MSE loss for its simplicity and effectiveness.
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3 Experiments and Results

Fig. 3. Lesions distribution of mild (left) and severe (right) MA groups on the left and
distributions of total lesion volume in mild (above) and severe (below) MA groups on
the right.

First, we present the empirical evidence of the correlation between PVL lesions
and MAC levels. In Fig. 3, we visualize the PVL lesion distributions in the mild
injury group and the severe injury group based on 16 lesions labeled samples
annotated by expert from Dataset2. Compared with the mild group, the distri-
bution map of the CP patients with severe impairment demonstrates that the
occurrence of injure follows a characteristic spatial pattern with more predilec-
tion for thalamus, basal ganglia and regions around the central sulcus which
are indeed related to manual ability. The result is consistent with the clinical
research.

Model training is done on two datasets containing 24 images with PVL seg-
mentation mask and 87 images with manual ability classification 68 mild, 29
severe respectively. We divide both dataset1 and dataset2 into 70% training,
10% validation and 20% testing for two target tasks. For auxiliary tasks, Lesion
Localization is trained on Dataset1 and Ventricle Segmentation is trained on
Dataset2, both with a 9:1 training-validation split. The performance of manual
ability classification is evaluated by accuracy and F1 score while the performance
of PVL lesion segmentation is evaluated by dice. To further show the validity
of the task setting, we train with different combinations of tasks via SHMN.
The setting includes (1) joint MAC and PVL Lesion Segmentation (SHMN-2),
(2) joint MAC and PVL Lesion Segmentation with Lesion Localization (SHMN-
3), (3) joint MAC and PVL Lesion segmentation with Lesion Localization and
Ventricle Segmentation (SHMN-4), (4) joint MAC and PVL Lesion Segmenta-
tion with Lesion Localization and Ventricle Segmentation using less labeled data
(SHMN-4*). Specifically we use 25 ventricle labeled MRI data in SHMN-4 while
pseudo-labeling 70 more ventricle unlabeled data with only 10 labeled data in
SHMN-4*.
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Table 1. Results of manual ability classification and PVL lesion segmentation

Method MAC Lesion segmentation

Accuracy F1 Dice

U-Net set single task 0.627 0.513 0.441

SHMN-2 0.667 0.583 0.532

SHMN-3 0.745 0.649 0.583

SHMN-4 0.843 0.789 0.607

SHMN-4* 0.824 0.757 0.600

As shown in Table 1, the proposed methods yield better results in both MAC
and lesion segmentation compared to the conventional approach of single-task
training with 3D U-Net [6]. The standard errors of MAC and of PVL segmen-
tation are 1.2e-3 and 1.6458e-2 respectively in the SHMN-4 setting. This exper-
iment implies that our heterogeneous multi-task model is superior to models
which learn from different tasks separately. Note that every auxiliary task does
help improving target task performance, proving that these medically related
tasks can indeed assist in the diagnosis. Specifically, even we just use 10 ventri-
cle labeled data in SHMN-4*, the model can still achieve quite satisfying results.
Thus we can achieve high segmentation and classification accuracy under the
condition of few annotation cost.

We have also compared our model with a SOTA multi-task learning archi-
tecture [3] by augmenting the 2D U-Net baseline model with an image classi-
fication subnet. The final loss is a combination of categorical cross-entropy for
image classification, and the dice loss and cross-entropy loss for PVL segmenta-
tion. Trained with the same setting as SHMN-2, the accuracy of MAC and dice
score of PVL segmentation are 0.627 and 0.531 respectively, compared to 0.667
and 0.532 for our result with SHMN-2. This demonstrates that our architecture
choice for multi-task learning is more effective than the previous work.

Fig. 4. A visual demonstration of the performance of the proposed SHMN. From left
to right: sample T2 FLAIR slices; expert annotations of PVL lesions in green; segmen-
tation of PVL lesions generated by U-Net and SHMN with different task setting in red.
Two rows represent different axial slices of the same instance. (Color figure online)
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Moreover, Fig. 4 demonstrates the segmentation results compared with the
expert annotation for the visual assessment of SHMN. Task setting is the same
as above. It is worth noting that after adding the ventricle segmentation task, the
model become more ventricle-sensitive in the PVL lesions segmentation observed
from the circled area.

To further evaluate SHMN’s effectiveness in the semi-supervised scenario, we
train our model with 5, 10, 15 and 20 ventricle segmentation labels and show
their MAC results in Fig. 5. Good classification accuracy can be achieved with
as few as 10 ventricle labels using our semi-supervised model.

Fig. 5. Accuracy and F1 score of Mcls with different sizes of labeled data used in Vseg

4 Discussion

In this paper an automatic and simple framework is presented for the medical
domain that can precisely detect small periventricular white matter lesions and
assist in the diagnosis of manual ability injury. Our work provides this novel
direction that explores auxiliary tasks and make full use of them which can
inspire more medical research. In our future research, we want to extend our
framework with even less annotation requirements and automatic auxiliary task
selection. We will consider unsupervised lesion detection by using anomaly detec-
tion and develop an algorithm that picks the most useful auxiliary tasks to train
based on automatically computed task relevance.
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