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Abstract

City management plays an important role in the era of urbanization. Understanding city regions and urban mobility patterns
are two vital aspects of city management. Numerous studies have been conducted on these two aspects respectively. However,
few work has considered combining city region partition and mobility pattern mining together while these two problems are
closely related. In this paper, we propose region-aware mobility pattern mining framework, which jointly finds the precise
origin and destination region partitions while extracting mobility patterns. We formulate it as an optimization problem of
maximizing OD’s correlations with spatial constraints. Kernelized ACE, is proposed to solve the problem by learning feature
representations that guarantee both objectives. Evaluation results using Beijing’s taxi data show that the extracted features
are appropriate for this problem and our approach outperforms all the other methods with ~ 0.3% spatial overlap and 86.43%
OD correlation. Our case studies on New York City’s urban dynamics and Beijing’s three-year consecutive analysis also
yield insightful findings that reveal city-scale mobility patterns and propose potential improvement for city management.

Keywords Urban dynamics - Mobility pattern - Region partition - Feature extraction - Co-clustering

1 Introduction

Urban population is growing rapidly worldwide. According
to United Nations World Urbanization Prospects [28], 66%
of world’s population will be residing in urban areas by
2050. Rapid urbanization is exerting severe pressure on
city management, which has two vital aspects: the spatial
distribution of an urban population and its internal migration
within the city [28]. The spatial distribution of population is
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formed by people residing in and interacting with different
regions of the city. Understanding how cities are partitioned
into regions and how these regions evolve, a.k.a. city
region partition, is therefore an important problem. Internal
migration refers to how people move from one region to
another in the city. An effective way to study internal
migration is through mobility pattern mining, i.e. using
mobility data to infer where people are most likely to go.
Numerous studies have been conducted on these two aspects
separately.

For city region partition, previous work focused on iden-
tifying city regions with semantic meanings were based on
similar functionality [30], social interactions [22] and traf-
fic information [9]. However, these work were mainly from
a socio-economic perspective but none of them analyzed
city structures considering people’s mobility movements.
Thus these regions with certain semantic meanings cannot
provide insights for mobility pattern mining applications.
While people’s mobility movements reflect functionalities
of different city regions. For example, many people from
region A go to region B in the morning may indicate
a commute route from residential to work. Partitioning
city structures based on mobility similarities could iden-
tify regions reflecting how people interact with the city,
thus benefit urban traffic management. Specifically, this
type of partition can be utilized for newly surfaced applica-
tions like customized bus service area design, which provide
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on-demand transit services for passengers with similar ori-
gins and destinations to help reduce peak-hour conges-
tion [13].

For mobility pattern mining, previous work tried to
extract salient mobility patterns while lacked of focus on
city management perspective. Traditional ways of mobility
pattern extraction were based on single-view methods by
clustering OD trips as points in high dimensional space [1,
32]. This approach has a limitation that, when clusters are
viewed by the spatial distribution of their origins (O) and
destinations (D), regions corresponding to different clusters
tend to overlap. Such overlaps produce spatial ambiguities,
which lead to limited guidance for administrative region-
based city management. Some methods addressed the
overlapping problem by a two-stage process. They first
partitioned the continuous space of OD locations into a
finite discrete set of non-overlapping regions (e.g. grid
cells [12, 31] or regions-of-interest (ROI) [25, 27]);
then extracted mobility patterns among those regions or
collection of regions. However, not only does two-stage
process lose fine-grained information and the region shapes
cannot be arbitrary; more importantly, there is no guarantee
that the partition would be appropriate in terms of mobility
pattern extraction.

While city region partition and mobility pattern mining
are closely related to each other, few work has considered
combining these two problems together. In this paper,
we propose the region-aware mobility pattern mining
framework, which jointly finds the origin and destination
region partitions, while extracting mobility patterns directly
in their own space. Specifically, our work partitions
a city into different regions based on spatial proximity
and mobility similarity for mobility pattern mining.
These partitions contains trip information appropriate for
mobility pattern mining applications, and the partitions
reflect people’s interactions with the city benefiting
urban traffic management. Informally, we formulate the
problem as learning feature representations of trip origins
and destinations that guarantee both objectives. For
mobility pattern mining, we adopt the HGR maximal
correlation [23], a well-defined dependence measure to
represent the mobility similarities among different OD
trips. For region partition, we add spatial constraints as
spatial proximity to minimize the amount of overlaps
between O/D regions of different clusters. Therefore, we
obtain OD features containing both information of mobility
patterns and region partitions. Using the extracted features,
we are able to partition the city into non-overlapping
OD regions, which also provide salient mobility patterns
between regions.

To solve the region-aware mobility pattern mining
problem efficiently, we propose the Kernelized Alternating
Conditional Expectation (KACE) algorithm based on a

@ Springer

statistical technique. The original ACE algorithm [16] is
an efficient way to compute HGR maximal correlation for
discrete random variables. However, it does not impose any
constraints on the extracted features, such as the spatial
constraints of regions in our case. Moreover, it cannot
be used on continuous data. Therefore, we applied kernel
smoothing technique [2] on ACE algorithm with an optimal
kernel to handle continuous data with spatial constraints.

We evaluated our algorithm on real taxi trip data
for both feature extraction and clustering results. For
feature extraction, we compared with both CCA and
KCCA, which are typical methods to achieve maximal
correlation. Features extracted by KACE have smaller
kurtosis thus could better differentiate between similar
data points. For clustering results, we obtained mobility
regions with only 0.33% and 0.22% overlap for origins
and destinations respectively but achieve 86.43% OD
correlation, which reduces overlap by up to ten times
comparing to other approaches. Compared with other
methods, including traditional methods [1, 4], ACE
algorithm with discretization [16], CCA[8], KCCA[7] and
state-of-the-art multi-view clustering method [19], our
method achieves minimum overlaps, concentrated regions,
highly correlated patterns and full spatial coverage.

Case studies of both New York City and Beijing provide
insightful findings. Specifically, our analysis discovered an
opposite urban dynamics between morning and evening
travel patterns in New York City. In a three-year analysis of
Beijing’s mobilities, we also identified mobility patterns and
regional variations during these years, like the development
of suburban areas and newly surfaced regions.

We summarize the contributions of our paper below:

1. A novel region-aware mobility pattern mining frame-
work. It considers both mobility pattern extraction and
OD region partition without overlap.

2. A kernel-based extension to the ACE algorithm for
extracting maximal correlated features. KACE is the
first algorithm to solve the HGR maximal correlation
problem with continuous input and feature constraints.

3. A thorough evaluation of KACE towards both fea-
ture and cluster results with real world data. Feature
evaluation shows KACE has tradeoff between correla-
tion and distribution kurtosis thus features are easier
to be clustered. Cluster results show the versatility
of our approach in disentangling complicated mobility
patterns comparing with both traditional methods and
state-of-the-art clustering algorithms.

4. Comprehensive case studies of both New York City and
Beijing with real taxi data. Urban dynamics analysis of
NYC reveals people’s travel patterns between different
functionalities in the city. A three-year analysis of
Beijing’s mobility patterns reveals its city development
and urban sprawl through years.
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This work is an extension to [14] with more detailed
literature review, thorough feature and cluster results
evaluation, new case studies using POI information of
NYC and three-year taxi data of Beijing. The remaining
parts of the paper are organized as follows. Section 2
introduces related work, Section 3 formulates the problem
mathematically, Section 4 illustrates the proposed algorithm
KACE, Section 5 evaluates the algorithm on both feature
and cluster results with real data, Section 6 points out the
findings of case study in NYC, Section 7 compares Beijing’s
mobility patterns in three years and the paper concludes in
Section 8.

2 Literature review

Several areas of studies are related to our work, including
urban dynamic analytics, region partition using GPS data,
mobility pattern mining and co-clustering problem.

2.1 Urban dynamic analytics

Traditional urban dynamic research adopt standard GIS
methods to study urban development. Inostroza et al.
used satellite imagery for 10 Latin American cities over
a period of 20 years to characterize urban development
and sprawling features measured with GIS tools [11].
However, these research do not take urban mobility into
consideration. Some other studies considered both spatial
dynamics and human mobility but lacked real data support.
According to Priemus, the relationship between mobility
and spatial dynamics is complicated and is an important
research area [21]. Garcia-Palomares adopted statistic
methods on census data to study relationships between
urban sprawl and commuters mobility [6]. Gao used Call
Detail Records studying spatial-temporal urban dynamics
to identify individual travel patterns or hot cells but lacked
focus on mobility patterns [5]. To the best of our knowledge,
our work is the first to compare city-wide mobility patterns
across the span of several years using large-scale real world
data with a focus on urban analytics.

2.2 City region partition

Studies of partitioning city into non-overlapping regions
have similarities to our work but none of them partitions
regions from a mobility perspective. Huang et al. partitioned
city into regions using taxi trajectory data to reflect street
connections and traffic information [9]. These regions
capture urban traffic information on roads but cannot
help with mobility pattern mining. Yuan et al. discovered
regions of different functions using point-of-interest and
mobility information [30]. Their work partitioned the urban

area boundaries based on existing road network, while
our method establishes regions based on mobility patterns
learned from data. Qi et al. divided city into grids and
used time-domain features of taxi pick-ups and drop-offs for
social function identification [22]. Instead of dividing the
city into mobility regions, their paper focused on accurately
identifying each area’s functionality. Liu et al. revealed sub-
regions of Shanghai by identifying sub-networks of taxi
trip network [15]. These regions are densely intra-connected
but with less inter-connections, thus the identified regions
cannot fully reveal the spatial dynamics of a city.

2.3 Mobility pattern mining

One important type of mobility pattern mining is to extract
common patterns of OD data. Zhu et al. modified density
based clustering algorithm DBSCAN in mobility mining
setup to extract popular OD pairs [32]. However, it can
only find salient and precise patterns and leads to overlap
between O/D clusters. Another type of work adopted a two-
stage process by discretizing a city into non-overlapping
sets first and extracting OD patterns on that set. Toole et
al. extracted meaningful stay points from call detail records,
and estimated OD flow between those points [27]. Tang et
al. adopted DBSCAN to cluster taxi pick-ups and drop-offs
first and then used discretized OD clusters to calibrate a
statistic mobility model [25]. Zhang et al. divided the urban
area into small OD grids before estimating OD flows to
extract semantic meaning of people’s mobilities [31]. All
of these work extracted mobility findings on discrete set
of regions, which are POI regions [27], O/D clusters [25]
or uniform grids [31] rather than original continuous data,
which limit the size, shape of the clustering results and have
no guarantee of the reasonable discretization and findings’
granularity.

2.4 Co-clustering methods

Co-clustering is the problem of simultaneously clustering
two types of correlated data, while is not widely applied
to mobility pattern mining problems. Kuo et al. used non-
negative tensor factorization (NTF) based co-clustering
algorithm and established an OD flow [12]. However, it
still has the discretization issue that binning GPS samples
into grids before applying NTF. We adopted feature-
based co-clustering algorithm without discretization to
overcome information loss of discretization. Nie et al.
proposed a state-of-the-art multi-view clustering algorithm
MLAN [19], a generalization of co-clustering, which
extracted an optimal distance metric from data itself and
co-clustered data under the optimal metric. However, it
only focused on achieving maximum correlation without
trade-offs on cluster size.
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3 Problem formulation
3.1 Region-aware mobility pattern mining problem

Given N taxi OD trips T = {(x;,yi),xi =
(xlat;, xlon;),y; = lat;,yon;),i = 1,---, N}1 as
input, we would like to partition N origins X into N, origin
regions and N destinations Y into N, destination regions,
i.e. each origin point x; has an origin region label O R(x;)
and destination point y; has destination region label D R(y;)
as output, such that

1. regional dependency between OR and DR is maxi-
mized;
2. points inside each cluster are close to each other.

3.1.1 Dependence measure

Rényi et al. pointed that the Hirschfeld-Gebelein-Rényi
maximal correlation is the only dependence measure
that satisfies all Rényi’s seven postulates [23]. While
the common used correlation coefficient only satisfies
two of them. Maximal correlation quantizes regional
dependencies to a measure between 0 and 1, and it is
comparable regardless of different data size. Therefore,
we adopt maximal correlation to quantify dependency
mathematically.

Definition 1 Hirschfeld-Gebelein-Rényi maximal correla-
tion. Maximal correlation between jointly distributed ran-
dom variables X and Y is defined as:

p(X;Y) = sup
f:X->R, g YV->R
ELf(X)]=E[g(Y)]=0
E[£2(X)]=E[g2(Y)]=1

ELf(X)g(Y)]

where the supremum is taken over all Borel measurable
functions. Furthermore, 0 < p(X;Y) < 1, p(X;Y) =0
if and only if X is independent of ¥, p(X; Y) = 1 if there
is a strict dependence between X ad Y, ie. ¥ = f(X) or
X =g(Y).

In the region-aware mobility pattern mining problem,
we would like to find feature functions f(X) of origins
X and g(Y) of destinations Y, s.t. the correlation between
f(X) and g(Y) is maximized for X and Y. The maximal
correlation of 0 happens only when origin and destination

Here xlat; and xlon; represent trip i’s latitude and longitude of origin
respectively; ylat; and ylon; represent trip i’s latitude and longitude
of destination respectively.
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regions are completely independent, which means origins
contain no information of destinations and vice versa. While
the maximal correlation of 1 indicates that the destinations
can be predicted with 100% certainty given origins or vice
versa.

3.1.2 Constraint satisfaction

In order to satisfy the spatial constraint that points within
each cluster are close to each other, we need to make sure
the features are close when the corresponding points are
close. Mathematically speaking, when origins x; and x;
are close to each other geographically, their corresponding
features f(x;) and f(x;) should be similar in value for
numbers or similar in norm for vectors. We use euclidean
distance between two vectors x; and x; to quantize physical
distance of two points, and base-2 norm of f(x;) — f(x;)
to quantize feature difference. The same principle applies to
the destination points, i.e.

Il f(xi) — f(x;)ll2 increases as ||x; — x|l increases

llg(yi) — g(y;)l2 increases as ||y; — y;||2 increases

Here, f(x;) is the feature vector of the i-th origin point x;,
likewise g(y;) is the feature vector of i-th destination y;.

3.2 Mathematic formulation

Combining Sections 3.1.1 and 3.1.2, we formulate the
region-aware mobility pattern mining problem as follow-
ing.

Given N taxi OD trips T={(x;, y;),i = 1,---, N} as
input, we would like to partition origins X into N, origin
regions and destinations Y into N, destination regions, such
that

1. The HGR maximal correlation between O R and DR is
maximized, i.e. the correlation between D-dimensional
features f(X) and g(Y) is maximized for X and Y

max ELf(X) g(1)]
E[f(X)]=E[g(Y)]=0 f &

Cov[ f(X)]=Cov[g(Y)]=I

2. Points inside a region are close to each other, i.e.

Il f(xi) — f(x;)ll2 increases as ||x; — x| increases
lg(yi) — g(y;)l2 increases as ||y; — y;ll2 increases

Based on proximity of features f(X) and g(Y), we
use linkage cluster [24], which is commonly applied in
geographic areas, to find Ny ORs, N, DRs and mobility
patterns between origin and destination regions.
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4 Algorithm
4.1 Overview

Figure 1 shows the flow chart of our algorithm. The
input of our algorithm is OD pairs of taxi trips. Pre-
processing raw trajectory data to extract OD pairs is
necessary. Our algorithm has two steps, feature extraction
with kernelized ACE and feature clustering with linkage
clustering [24]. First, we extract features of origins and
destinations considering both OD correlation and spatial
constraints formulated in Section 3. Then we cluster O/D
features separately. As features already contain information
of OD correlation, clustering them separately still captures
mobility patterns while obtaining non-overlapping O/D
regions. The outputs of our algorithm are origin regions
(OR), destination regions (DR), i.e. OR and DR label of
each O and D point, and OD patterns from OR to DR with
a probability indicating the percentage of trips originating
from OR that end at DR.

4.2 Kernelized ACE
4.2.1 Limitations of ACE algorithm

Makur et al. solved the problem of obtaining D-dimensional
feature functions f(-) and g(-) to achieve maximal
correlation by Alternating Conditional Expectation (ACE)
algorithm efficiently [16].

However, this ACE algorithm cannot be applied to
our problem directly due to two issues. First, ACE is
designed for discrete-valued data while our co-clustering
problem involves continuous-valued GPS data. Second,
ACE cannot place additional constraints on features. The
connection between X and Y is hidden in data pairs. For
example, in the Netflix [18] Prize problem of predicting
user ratings for films, the similarities between movies are
reflected by the ratings of different users but there is no
obvious connections between movies or users themselves.

INPUT: OD Pairs
(latitude, longitude)

Origin Destination

(39.7298°N, | (40.0009°N,
116.1285°E) [ 116.4015°E)
Preprocess

>(39.8862°N, (39.9796°N,
116.2254°E) | 116.4028°E)

(39.9133°N, | (39.8697°N,
116.3158°E) | 116.4203°F)

Fig. 1 Flow chart of our algorithm

On the contrary, from the mobility perspective, not only the
dependencies between origins (X) and destinations (Y)
should be considered, the distances between origin points
or destination points should also contribute to finding
geographically meaningful regions.

A simple but suboptimal solution is to discretize
continuous data into discrete categories. However, the
drawbacks are obvious. First, the best discretization
approach is hard to find. It is unrealistic and time-
consuming to adopt the best combination after traversing
every possibilities of methods and parameters. Second,
the step of discretization loses information. Instead of
discretization, we propose to use the original data for feature
extraction.

4.2.2 Kernel method

We address the limitations of ACE algorithm by applying
appropriate kernels on the original continuous data. The
main reason that ACE cannot deal with continuous data lies
in the step of computing conditional expectations.

YN el =x)

Ealg(Y)|X =x] =
YLl =) (1)

where 1 (-) is an indicator function.

Equation 1 shows how to compute empirical expectations
in ACE using discrete data samples. In continuous-valued
data scenario, 1(x; = x) can be small or only 1 thus
loses information contained in the neighbourhood of x.
Therefore, we apply kernel smoothing [2] technique which
uses values of points nearby for expectation estimation.
Intuitively, we replace the indicator function in Eq. 1 in
numerator to a kernel K (x;, x) shown as Eq. 2. It is used to
replace Eq. 1 in ACE as step 2a in Algorithm 1.

N
i Zi:1g()’i)K(xisx)
J&x) =Enlg(V)|X =x] < (2)
N
O Features OUTPUT: OR
Feature | Feature OUTPUT:
OD Patterns
Extraction| . Clustering| . OltoDL-31%
£ s 05 to D5 - 87%
Maxi-mize correlation v\{hile 03 to D3 - 45%
satisfy spatial constraint 03toD2-37%
5 04 to D3 - 43%
2 0O4to D2-30%
Feature 3 Feature O4toD4-21%
Extraction | Clustering |-«

D Features OUTPUT: DR
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Equation 2 considers g(-) of points around x with weights
determined by kernel K (x;, x). When K (x;,x) = 1, g(y;)
feature of pair (x;,y;) is fully considered to compute
f(x). When K (x;, x) = 0, g(y;) has no influence on f(x)
at all.

Algorithm 1 D-dimensional kernelized ACE for clustering.

Require: training samples {(x;, y;) : i =1, ..., N}
1. Initialize: randomly generate and regularize fy(x;),
ga(i)i=1,--- ,Njd=1,---,D
repeat
2a. Feature iteration:

SN (K (x.x0)

falxi) < SELECTZT0 K (g, x) = =[x —xi
SN fa K i)

ga(yi) < =E=5—"— K (yj. yi) = 1—yj—yill2

2b. Regularize: f;(-), gq4(-),d =1, ..., D.

FaG) < fae) — BLHOD g6y futn)
N
ga(i) < ga(y) — 28100 g () 240D
N
2c¢. Gram-Schmidt:
ford =1to D do
fork=1tod —1do
o) = 100~ SR o
80 8000 (o
end for
end for

until E[fl,z..‘p(x)Tgl’z...D(y)] stops to increase
3. Output: Region label of each point x; and y;
3a. OR(x;) < Linkage cluster of fi .. p(x;),i =

1,---, N with maximum cluster number N,
3b. DR(y;) <« Linkage cluster of gi.. p(yi),i =
1,---, N with maximum cluster number Ny

4.2.3 Extract D-dimensional deatures

Equation 2 tells us how to extract 1D feature f(x) and
g(y). However, mobility patterns are complicated and
extracting only one dimension of feature is not adequate.
Therefore, we further extract D-dimensional features in
Algorithm 1. The key idea is to obtain features that are
orthogonal to the previously obtained features to avoid
redundant information [16]. Therefore, we apply Gram-
Schmidt orthogonalization to the feature functions in step
2c.

@ Springer

4.3 Kernel choice

One challenge of Kernelized ACE is how to choose the most
appropriate kernel function.

Recall that the spatial constraint states that features
should be close to each other when data points are close.
Therefore, features of points close to the specific point of
interest are more important than features of points far away.
In Eq. 2, kernel K (x;, x) serves as feature weights, which
should satisfy the following two properties.

1. K(x;, x) is a non-increasing function of ||x; — x||2
2. K(xj,x)=1when|x; —x|>=0

Intuitively, data that are close to x should have higher
weights for computing f(x), which can be expressed
mathematically in Property 1. It also satisfies || f(x;) —
f(xj)|l> increases as |lx; — xj|2 increases. Property 2
comes from the meaning of weights, where K (x;, x) = 1
means feature g(y;) of trip (x;, y;) is fully considered while
K (x;, x) = 0 means g(y;) is not considered completely.

The following three kernels satisfy the aforementioned
two properties and are commonly used in kernel smoothing
techniques. They are

1. window kernel, Ki(x;,x) = 1L(lx; — x[l2 <= vy),,
parameterized by y (y > 0);
=13
2. Gaussian kernel, K>(x;, x) = e 2?2 | parameterized

by o (o > 0);
3. negative linear kernel, K3(x;,x) = 1 — allx; — x||2,
parameterized by a(a > 0).

The features f and g are not only influenced by different
kernels, but also parameter choices. However, when we
don’t have prior knowledge of what we are looking for,
negative linear kernel (K3) is a good choice of identifying
significant data correlation patterns for continuous data. We
prove that parameters of negative linear kernel don’t affect
correlation’s results in Theorem 4.12. Therefore, negative
linear kernel, K3(x;, x) = 1 — |lx; — x||2, is chosen to be
used in Algorithm 1.

Theorem 1 Different intercepts or slopes for negative
linear kernel do not change the results of features, i.e.
Ki(xi,x) =1 —|xi —xll2, Ka(xi,x) = b — |lxi — x|2
and K3(xi,x) = 1 —al|lx; — x||2(a > 0) produce the same
features f and g.

Based on proximity of extracted features, we cluster
high-dimensional features into O/D region labels using link-
age clustering [24] methods. Finally, the whole kernelized
ACE algorithm is shown in Algorithm 1.

2Proof of Theorem 4.1 can be found in the initial version [14].
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Table 1 Summary of Beijing and NYC Taxi Dataset
Beijing 2012 Beijing 2014 Beijing 2015 NYC 2015
17:00-17:59 Total Trip Number 86311 155370 118433 213175
Average OD Distance 4.42km 4.64km 3.63km 2.95km
Filtered Trip Number 48900 88918 54199 127648
7:00-7:59 Total Trip Number 70755 129867 116817 208336
Average OD Distance 5.66km 5.78km 4.71km 3.38km
Filtered Trip Number 47250 86069 65330 137140

5 Evaluation
5.1 Data description

We evaluated Algorithm 1 and conducted case studies on
two real world datasets of Beijing and New York City.
Since mobility patterns depend on time-of-day, day-of-week
and other temporal factors, one month of weekdays’ data
in November during the morning and evening rush hour
7:00-7:59/17:00-17:59 were considered.

For New York City, we used open source dataset [26] of
the year 2015 published by the NYC Taxi and Limousine
Commission. The data only contains OD pair information
with time stamps without intermediate points. We combined
trips of both yellow taxis, serving Manhattan exclusionary
zone, and green taxis, serving borough areas, to evaluate taxi
trips covering the whole city. Besides, only trips longer than
2km were considered.

For Beijing taxi data, we extracted occupied trip
information from the raw GPS trajectories with sample
rate at around 1 minute in year 2012, 2014 and 2015.
Each sample contains a unique taxi number, time stamp,
latitude, longitude, and occupancy indicator (occupied 1,
vacant 0 or stopped —1). We determined pick-up happens
when the occupancy indicator turns from 0 to 1 and drop-
off happens when occupancy turns from 1 to 0. In addition,
we omitted short trips to eliminate incorrectly recorded data.
Only trips longer than 3km and lasting more than 1min
were considered. Beijing’s filtered OD distance is longer
than New York’s because Beijing has longer average OD
distance. More details of the taxi datasets are shown in
Table 1.

Table 2 Feature comparisons of KACE, CCA and KCCA

5.2 Feature evaluation

We compared extracted feature of KACE with two typical
feature extraction methods (CCA [8] and KCCA [7]) using
Beijing’s evening data. CCA and KCCA correlate linear
and high-dimensional relationships between two variables
respectively. The features are evaluated by three metrics:

Correlation: measures correlation of f and g’s different
dimension of features.

Validity: is the correlation coefficient between feature
distance || f; — f}|l2 and coordinates distance ||x; — x;||2.
A bigger value means that the features satisfy the spatial
constraint better.

Distribution Kurtosis: measures the “tailedness” of a
distribution. A larger value means the distribution has
heavier tail, more outliers and higher peak. High kurtosis
leads to difficulties in clustering features.

The results are shown in Table 2. For CCA, it found linear
projections of latitudes and longitudes but only extracted
two dimensions of features. For KCCA, Gaussian kernel
was applied here with best kernel parameter chosen and
regularization for comparison. Both CCA and KCCA
result to high feature correlation even better than KACE.
However, they have much bigger kurtosis and lead to larger
clusters as shown in Table 3 of cluster results. Besides,
we also found that the first two dimensions of features
extracted by KACE are similar to CCA’s two dimensional
features with 0.9556 and 0.9522 similarity respectively. The
similarity is measured by the cosine of angle between two
feature vectors. Since ACE is a non-linear generalization

Correlation Validity Kurtosis (f)

DI D2 D3 f g fi 2 f3
KACE 0.85 0.82 0.76 0.95 0.95 2.39 1.99 7.79
CCA 0.87 0.82 / 0.98 0.98 5.03 3.54 /
KCCA 0.88 0.84 0.84 0.89 0.89 5.64 3.97 14.59
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Table 3 Comparisons with other methods based on spatial coverage, in-cluster distance and regional dependency

Methods Spatial Average Origin Average Destination Regional Origin Destination
Coverage in-cluster Distance in-cluster Distance Correlation Overlap Overlap
KACE 100% 2.98km 3.21km 0.8643 0.33% 0.22%
ACE-5 x 5 100% 5.06km 5.21km 0.8068 0.78% 0.64%
ACE-20 x 20 100% 8.48km 8.78km 0.8646 0.75% 0.61%
MLAN 100% 11.82km 12.58km 1 4.43% 4.19%
CCA 100% 4.38km 4.78km 0.8480 0.34% 0.22%
KCCA 100% 4.99km 6.12km 0.8576 0.32% 0.35%
K-Means++ 100% 4.26km 4.42km 1 54.26% 50.75%
DBSCAN 25.75% 0.60km 0.63km 1 39.21% 35.85%

of CCA [16], our method KACE captures both linear and
non-linear correlated features. Only in this case, the top
two most correlated features happens to be linear ones as
CCA’s features and a non-linear feature in the third feature
dimension which CCA cannot extract. The results show that
KACE captures major correlations of data while has tradeoff
with less outliers.

5.3 Model analysis

We analyzed variations of regional correlation from two
aspects: feature dimension and number of clusters.

Feature Dimension. For discrete variables, an upper
bound of feature dimension is the variable’s cardinality.
While for continuous variables, we can extract as many
features as we want. However, there is a trade-off
between feature dimensions and computational power.

Cluster Number. Number of clusters also influences the
OD patterns and the understanding of the city. Though
many regions provide detailed analysis of mobility
patterns, they lack holistic understanding and guiding
information for city management authorities.

Regional Correlation. We obtain discrete O/D regions
and compute regional correlations as correlation metric

20— [l6],

of our model. We define a matrix as B = —==——
where O/D represents origin/destination regions’ label

VPov/Pp

respectively. Correlations are singular values of B in a
descending order, i.e. corr; = o;, where o9 = 1 >
oy > oy > > ok_ are singular values of B
matrix , in which K = min{|O|, |D|} [16]. Instead
of using just the maximal regional correlation (corr;)
as the correlation metric, we used an average of top-5
correlations, called average regional correlation defined
in Eq. 3. Because maximal correlation applied in real-
world data may encounter the problem that it weighs too
much on the most salient dependent pattern and fails to
identify other informative ones. Therefore, we took next
four correlations into consideration for identifying more
patterns and avoiding some insignificant ones.

i=5 i=5
_ D_i_1COrT; _ 2 _i—10i
corr = =

5 5

3)

We studied how regional correlations changed with
the increase of feature dimensions for different cluster
numbers and showed results in Fig. 2. We extracted origin
and destination regions using the first D(1 < D <
5) dimensions of KACE feature and set region number
from 20 to 60. We first showed Beijing’s results in
Fig. 2a. The correlation under different number of clusters
generally increases with more features added in, but has
a turning point at minimum optimal feature dimension.
Specifically, the correlations raise significantly for the first
three dimension of features and reach a stable stage (when

Fig.2 Relationship between
regional correlation to number
of clusters and feature
dimensions in Beijing and NYC
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cluster number is more than 30). Therefore, the minimum
optimal feature dimension for obtaining mobility patterns
in Beijing should be three. The results of New York’s data
show similar findings in Fig. 2b. The difference is that
the minimum optimal feature dimension is two. Therefore,
in our case studies of Beijing and NYC, we used three
and two dimension of features for each city respectively.
With number of clusters increasing, the regional correlation
increases gradually but the increasing step decreases for
both cities. It tells us that separating for more clusters
benefits only a little for regional correlations. Therefore, we
chose a cluster number of 40 for Beijing and 30 for NYC
to achieve a comparatively higher correlation with fewer
clusters in our case studies.

5.4 Cluster performance analysis

We compared KACE with both traditional methods and
state-of-the-art co-clustering algorithms on the Beijing
dataset using four metrics:

Spatial coverage, measures the percentage of points
identified and clustered by the given method.

Average in-cluster distance, measures average pair-wise
distance within the same region. A smaller value is better.

Regional correlation, average of the top-five correla-
tions among all pairs of OD regions defined in
Section 5.3. We use this metric to measure how well the
clustering methods retain trip information.

Overlap, estimates the spatial ambiguity among different
origin or destination regions. This metric is computed
using the KNN classification error of cluster labels based
on origin or destination coordinates, which should be
very small for non-overlapping data [3]. In particular,
the KNN model (K=5) was trained and tested on a 9-1
split of the origin or destination points, i.e. 10-fold cross-
validation classification error was used as overlapping
indicator.

For single-view methods, the classic K-Means++ [1]
and DBSCAN [4] were adopted as baselines. We directly
clustered OD trips using these two methods by treating
trips as points in four dimensional space, i.e. latitudes
and longitudes of origins and destinations respectively.
Then evaluated the results in O/D view. For co-clustering
methods, we compared with state-of-the-art multi-view
clustering algorithm MLAN [19]. We also compared
with the performance of the original ACE algorithm, by
discretizing GPS data using 5 x 5 and 20 x 20 grids. Results
of using features extracted by both CCA [8] and KCCA [7]
are also listed. For fair comparison, we set the cluster
number to 40 for all methods as shown in Table 3. The
single-view methods, K-means++ and DBSCAN, regional
correlations are at the maximum value 1. However, the

resulting clusters have a significant amount of spatial
overlap. All the co-clustering methods have less overlap.
MLAN has great regional correlation, tolerable overlap but
fails to identify detailed regions as the average in-cluster
distance is greater than 10km. Because MLAN only focuses
on achieving best correlation without trade-offs on cluster
size, which lead to large regions and fails to provide detailed
guidance for city management. The original ACE algorithm
improves upon the results of MLAN by introducing cluster
size trade-offs manually with discretization, though it is not
as good as KACE. Other feature extraction methods, CCA
and KCCA, result to bigger regions as their features are
denser and harder to differentiate for the clustering method.
Our algorithm, KACE, outperforms all the other methods
for overall performance, which has minimum overlap, best
spatial coverage, small region size and good correlation.

6 Case study: New York City urban dynamics
analysis

6.1 OD transition probability

As pointed out in Section 5.3, we used first two dimension
of features with 30 regions for the NYC case study. After
getting O/D regions, we obtained OD mobility patterns with
transition probability P(O, D).

# of trips started from region o and ended at d
Total # of trips

Po.p(o,d)=

For easier visualization and interpretation, we permutated
the region labels O and D such that the OD patterns with
highest probability lie on the diagonal of the transition
matrix in orders. This problem is known as the Munkres
Assignment Problem which can be solved in polynomial
time by the Munkres Algorithm [17]. In our setup, we want
to find an assignment of O and D labels, such that the
sum of probabilities from region O; to D; is maximized.
Therefore, if the OD pattern is one-to-one, the OD transition
probability matrix should be diagonal. Stronger diagonality
represents better OD correlations. Figure 3 shows OD
mobility patterns with transition probability in NYC.

6.2 Urban dynamics and region functionalities

Figure 4a shows the NYC region partition results. For
visualization, we colored adjacent regions differently to
distinguish from surrounding regions; O/D regions with the
same ID number shared the same color. We can see that
NYC’s mobility regions align with its city topology. Both
the origin and the destination partition identify existing
districts in NYC such as Manhattan Borough, Bronx and
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Fig. 3 NYC mobility patterns with OD transition probability of 30
regions, workdays of November 2015, 17:00-17:59

Brooklyn. For example, the outlines between O5 and O16,
02 and O12, separate Manhattan Borough from Bronx and
Brooklyn respectively. On the Manhattan island, the regions
reveal the block city topology.

Each region has different functionalities in terms of
Point-Of-Interest (POI). We obtained NYC’s POIs from
NYC Open Data [20] and only adopted POI labels
established before 2016 to be consistent with the taxi trip
data. Seven functionalities are considered in our analysis as
shown in Fig. 4b. For example, JFK international airport is
the most popular POI in region 024, thus more than 80% of
024’s POI distribution is transportation; while region 026
is a major residential area.

Combining with mobility patterns, we analyzed how
people move between areas of different functionalities.

Origination Clusters

Destination Clusters

We computed the POI transition probability P(Fy, F>) as
following

P(Fi, F2) = ) P(F1|0)P(F2|D)P (0, D)
0.D

in which P(F;|O) is the percentage of POI label F; out
of all the POIs in region O, P(O, D) is the OD transition
probability defined in Section 6.1. Figure 5 plotted all the
major urban dynamics. We found that people move in
opposite directions in the morning and evening. In the
evening, people move from Government Facility and Com-
mercial areas to Residential area; while in the morning, trips
are made in the opposite direction originated from Resi-
dential areas to Government Facility and Commercial areas.
Moreover, popular mobility movements are the same
regardless of morning or evening. Major dynamic patterns
like movements between Recreation and Residential are
popular in both morning and evening. The only difference is
that in the morning both directions have similar probability
of moving between Recreation and Residential while more
people go from Recreation to Residential (0.027) than the
reverse direction (0.024) in the evening.

7 Case study: Beijing urban analytics
by mobility pattern comparisons in Year
2012,2014 and 2015

7.1 Comparisons of regional correlation
Figure 6 illustrates that mobility patterns become more

concentrated from 2012 to 2015 as regional correlations
increase gradually. For evening’s OD patterns, regional
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Fig.5 Urban dynamics of NYC,
workdays of Nov. 2015

Government Facility

(a) 17:00-17:59

correlation has a 39.51% increase from 2012 to 2014,
while only 7.84% increase from 2014 to 2015. This
indicates that mobility patterns change significantly from
2012 to 2014 but only a little from 2014 to 2015.
Moreover, evening mobility patterns are more regular
than morning patterns in 2014 and 2015 as evening’s
correlations are always higher than morning’s. Therefore,
we made further analysis of mobility patterns over three
years using data during 17:00-17:59, in order to make fair
comparisons between years.

7.2 Macroscopic analysis

From a macroscopic perspective, we partitioned the city of
Beijing into two regions as shown in Fig. 7, which is also
the minimum number of regions, as partitioning a city into
one cluster results in its own.

Top-level zoning of Beijing has been changed, from North-
South division to Inner-Outer division Beijing is divided
into North-Eastern and South-Western regions in 2012
(Fig. 7a). While in 2014 (Fig. 7b) and 2015 (Fig. 7c), the
South-Western corner of Beijing, i.e. Fangshan District, is
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isolated from other areas, as it is far away from central
areas and the development of that district is not as evolved
as other areas. Thus, Beijing is separated into inner city
and outer city, which includes regions like the Fangshan
District. We also found that the interaction between inner
city and Fangshan District is little, since only less than
0.1% of trips go from inner city to Fangshan District. The
reverse direction, from Fangshan District to inner city, is
more active but the probability of movement is also small,
with about only 3% trips originated from Fangshan ended at
inner city.

7.3 Microscopic analysis

In this section, we focused on analysing more detailed
region divisions. Each year has 40 O/D clusters for fair
comparisons as shown in Fig. 8. For clarity, we only
displayed salient patterns where ORs have more than 20%
trips ended at the DR, i.e. P(D =d|0 = 0) > 0.2.

New regions emerged and neighboring areas may become
similar in Beijing Apart from OD patterns, the region
partitions reveal urban changes among years. A new region
Dongba emerged, as O32 and D32 in 2014 and O33 and
D40 in 2015, which is a new residential area. Moreover,
DI, D12 and D24 in 2012 merged into a large area D12 in
2014, which is labeled as D10 in 2015. This region has been
developed into a mainly residential area at the west corner
in Beijing. These changes show the development from 2012
to 2014 and 2015. It appears that region partition of 2015 is
more similar to 2014’s than 2012’s. In order to verify this
observation, we established a numerical method to compare
between different years’ region partition.

Adjusted Rand Index [10] and Normalized Mutual
Information [29] are typical indexes to evaluate the
clustering performance with the ground truth. Although
we don’t have a ground truth for region division, different
years’ partitions can be compared by these indexes to
evaluate region partition’s similarities. However, two issues
remain to be addressed. First, spatial coverage of 2012,
2014 and 2015 are different and some suburban areas are
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Fig.7 Three-year OD patterns with two clusters in Beijing, workdays in November, 17:00-17:59

not sampled in 2012’s data. Second, even for the same
spatial coverage, different points in different years represent
different locations, which cannot be compared directly
using cluster labels. Therefore, we proposed to capture the
partition scheme of each year by k-nearest neighbor (KNN)
method, and predicted the partitions on the same dataset to
be compared with. Here, we adopted k=5 and modeled each
year’s origin and destination partition by different time slot.
Because the spatial coverage of 2012 is limited, we used
KNN to model clustering results of 2014 and 2015, and
made predictions on 2012’s data to compare with 2012’s
region partition. For comparisons between 2014 and 2015,
we modeled results of 2015 and made predictions on 2014’s
data. The result is shown in Table 4.

The two indexes may result in different values but the
trend is the same for both of them. A bigger value means
more similar partitions. For the morning peak hour, we
found that close years have more similar region divisions
for both origins and destinations. In particular, the indexes
between region divisions in 2014 and 2015 are larger than
those between 2012 and 2014, 2012 and 2015. For evening
peak hour, the destination partition follows the same rule.
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However, a rare exception is the origin partition, i.e. 2015’s
partition is more similar to 2012’s than 2014’s in the
evening.

Suburban districts in Beijing develop from 2012 to 2015
From top OD patterns of each year in Fig. 8, we found
that people tend to move inside suburban districts by taxis.
This trend grows stronger from 2012 to 2015 because of the
development and better functional division of rural areas.
From the data of 2012, we observe that the coverage of outer
part (South-Western and North-Eastern corner) of Beijing
is much less than 2014’s and 2015’s indicating an outward
expansion in the year 2014 and 2015.

The top patterns in 2012 including O25 to D25 (Yizhuang
to Yizhuang), 020 to D20 (Tongzhou to Tongzhou) and 026
to D26 (Daxing to Daxing) have more than 30% probability
of internal movements. However, in 2014, the probability
of OD trips originated and ended at those remote areas
increases significantly, shown in Fig. 8b. Salient patterns of
010 to D10 (moving inside Fangshan District) and OS5 to
D5 (moving inside Shunyi District) in 2014 are not even
included in 2012’s patterns, indicating outward expansion
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Fig.8 Three-year OD patterns with 40 clusters in Beijing, workdays in November, 17:00-17:59

Other major patterns
with PD|0 > 30%

@ Springer



472

Mobile Netw Appl (2020) 25:459-473

Table 4 Comparisons of region partition between year 2012, 2014 and 2015 in Beijing, 7:00-7:59 and 17:00-17:59, workdays of November

7:00-7:59 17:00-17:59

Years ARI NMI ARI NMI
OR 2012 and 2014 0.5234 0.7720 0.5414 0.7927

2012 and 2015 0.5650 0.7961 0.5255 0.7885

2014 and 2015 0.6041 0.8217 0.7285 0.8496
DR 2012 and 2014 0.5454 0.7938 0.6197 0.7986

2012 and 2015 0.4950 0.7603 0.5787 0.7906

2014 and 2015 0.6310 0.8425 0.7409 0.8293

of Beijing and newly surfaced suburban regions. Morover,
Shunyi District as in O17 of Fig. 8a has evolved into three
regions of O5 (downtown area of Shunyi), 022 (Beijing
International Airport area) and O27 (airport surrounding
area) in Fig. 8b with different region functions. Similarly,
020 (Tongzhou) area in 2012 has expanded outward and
formed into O19 (Guanzhuang) and O7 (Tongzhou) areas,
which is a sign of functional division. Besides, both O13
(Yizhuang) and O17 (Daxing) have matching regions 025
(Yizhuang) and 026 (Daxing) in 2012, but with around 10%
probability increase of internal movements.

In the year of 2015, the suburban regions almost remain
the same while the probability of suburban population
staying within their respective regions keeps increasing. The
most salient increase is the internal movement in Daxing,
which increases from 44.89% O17 to D17 in 2014 to
81.96% probability of O15 to D15 in 2015.

Outer city mobility patterns have overlap from 2012 to 2015
022 to D22 (34.64%) in 2012, 023 to D15 (41.04%) in
2014 and 023 to D16 (35.14%) in 2015 are from Xibeiwang
to Qinghe. 023 to D23 (22.69%) in 2012, O18 to D18
(23.03%) in 2014 and 025 to D9 (34.59%) in 2015 are
from Beiyuan commercial area to Datun residential area.
020 to D20 (34.92%) in 2012, O19 to D19 (25.20%) in
2014 and 024 to D24 (26.30%) in 2015 from Guanzhuang
to Sihui. Although these patterns are not in the suburban
area, they still are far from central areas. On the contrary,
for the inner city, both region partition and mobility patterns
change constantly in year 2012, 2014 and 2015.

8 Conclusion

Mobility pattern mining and city region partition are
important socioeconomic problems. However, few methods
combine them together while these two problems are
closely related. Therefore, we proposed a region-aware
mobility pattern mining scheme by jointly partitions city
regions while extracting OD patterns. Kernelized ACE,
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is developed to extract features that both satisfy regional
spatial constraints and achieve maximal OD correlations.
Experimental results on Beijing’s taxi data show that our
approach extracts precise features and outperforms all the
other methods including both traditional and state-of-art
algorithms. We also analyzed how to choose optimal feature
dimension and number of clusters in our algorithm. Our case
studies on New York City and Beijing provide insightful
findings. Regions obtained from a mobility perspective
could reveal different regions’ functions and how people
move between areas of different functionalities in NYC. A
three-year consecutive analysis of Beijing reveals the city’s
development and urban sprawl. Future directions of this
work involve taking other factors into consideration, like
temporal index. Besides, we could further develop it for
applications like mobility service demands prediction.
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