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ABSTRACT
Accurate capacity estimation is essential in a board range of battery
applications. Because of the highly nonlinearity in the battery aging
mechanism, recent works employ many supervised learning meth-
ods, which assume training and testing battery samples are gener-
ated from the same sample distribution. However, it is common for
different battery data sets to have some extent of distribution shifts
caused by different battery sizes, testing environments and histor-
ical load patterns. In this paper, we consider the scenario when
only a few of labeled samples from the testing data set are available
and formulate the battery estimation problem as a semi-supervised
transfer learning problem. Inspired by JDOT, an unsupervised joint
distribution domain adaptation algorithm based on optimal trans-
port, we propose Semi-JDOT for regression problems where the
source and the target label distributions have unequal supports.
Our approach incorporates prior information of the labeled target
samples as additional constraints and can be solved analytically.
We conduct comprehensive experiments on a number of distinct
battery data sets. The results show that the proposed approach
outperforms existing supervised and semi-supervised methods by
10-30% under various few-shot experiment settings.

CCS CONCEPTS
•Computingmethodologies→ Semi-supervised learning set-
tings; • Applied computing→ Electronics.
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1 INTRODUCTION
Lithium-ion batteries are widely used in various kinds of appli-
cations from Electrical Vehicles (EV) to Energy Storage Systems
in power grids [3, 9, 17]. Having a reliable estimation about the
battery performance is essential in these applications. For example,
an inaccurate estimation of the battery capacity results in over-
charging, which may in turn accelerate battery aging or even cause
spontaneous combustion [12]. Traditionally, the time-consuming
Constant Current Constant Voltage (CC-CV) test is used to deter-
mine the battery capacity. Though it is the most accurate test for
battery capacity, it costs several hours to test each battery, thus it is
not suitable for real applications where hundreds of batteries need
to be tested in a short amount of time.

Many scholars have used supervised learning to predict battery
capacity from fast-to-obtain battery test signals, such as current,
voltage and temperature during charging-discharging cycles [11,
13, 16, 22]. However, all these methods, relying heavily on the
training data, can not generalize well to battery data collected from
different experiment settings. As battery cells often experience
different load patterns and have different aging paths, their training
and testing data distributions often differ, also known as a domain
shift. As a result, supervised learning methods trained on a battery
data set from one specific experiment setting can not be used for
prediction on other battery data sets with different experiment
settings. Instead, these models need to be retrained from scratch for
every different battery data set. What’s worse, retraining the same
model is quite time-consuming as the labels need to be generated
from the CC-CV test. Hence it is critical to improve the cross-
domain generalization ability in battery capacity estimation.
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Figure 1: Empirical distributions for Pulse data set.

A common approach to deal with domain shift is transfer learn-
ing (domain adaptation), which aims at finding a model that works
well on both the source data set and the target data set. Joint Distri-
bution Optimal Transport (JDOT) proposed in [5] is an unsuper-
vised domain adaptation method based on optimal transport. Opti-
mal transport based approaches are suitable for the cross-domain
capacity estimation problem, as they impose no distribution as-
sumption on the data and can handle unequal support of the source
and target feature distributions. Unlike earlier optimal transport
methods that only consider the transport between marginal fea-
ture distributions [6], JDOT tries to minimize a total transport cost
between the joint distributions from source and target domains.
However, as JDOT is designed for unsupervised domain adaptation,
it does not use any prior information of the target labels, which
will be a problem when the target label distribution has a different
support from the source. As shown in Figure 1, the source and
target battery sets not only have differences in the marginal feature
distribution but also in the marginal label distribution. Thus, merely
using JDOT is not suitable for the cross domain battery capacity
estimation.

To tackle the aforementioned challenges, we propose a semi-
supervised joint distribution optimal transport model. To be spe-
cific, we regard cross domain battery capacity estimation as a semi-
supervised transfer learning problem. And only a few labeled sam-
ples in the target domain are required in our proposed method.
Note that it takes several hours to generate a required label, so that
nearly dozens or hundreds of hours are needed to generate enough
labels for training supervised learning models from scratch. We ex-
tend JDOT by adding additional constraints provided by the labeled
target data and derive the optimal solution to the corresponding
modified optimization problem.

The main contribution for this paper is summarized as following:

(1) A semi-supervised JDOT model is proposed. It needs only a
few labels (4-8) in the target data set, which largely reduces
the required label generation time and cost.

(2) The proposed semi-JDOT model can effectively address the
domain shift problem in both feature and label spaces.

(3) Comprehensive experiments on two pairs of different bat-
tery data sets are conducted. The results demonstrate the
effectiveness of our proposed methods under standard and
few-shot settings.

2 METHOD
In this section, we begin with defining the cross-domain battery
capacity estimation problem. Then we introduce the JDOT model
for unsupervised domain adaptation. Finally we give the detailed
explanation about our proposed semi-supervised extension for re-
gression problems.

2.1 Problem Formulation
In cross-domain battery capacity estimation, we are given a source
data set S =

{(
xs1 ,y

s
1

)
, · · · ,

(
xsns ,y

s
ns

)}
of ns samples generated

from controllable lab tests, such that their capacity values are
known. We use xsi ∈ X and ysi ∈ R to denote the features (voltage
curve) and the label (capacity value) of the i-th sample respectively.
Our goal is to learn a prediction function for the target data set
T =

{(
xt1 ,y

t
1

)
, · · · ,

(
xtnt ,y

t
nt

)}
where xti is known for each sample,

but only l << nt of them have the corresponding capacity measure-
ments yti . For simplicity, we assume the target samples are ordered
such that yt1 . . .y

t
l are known and ytl+1 . . .y

t
nt are unknown. As a

result, the training set includes the whole source data set S and
the l samples with known labels yt1 . . .y

t
l in the target data set T .

While the test set is the remaining samples with unknown labels
ytl+1 . . .y

t
nt in the target data set T .

Let PS = P(xs ,ys ) and PT = P(xt ,yt ) be the joint distributions
that respectively generate the source and target data sets. Because
of the differences in experiment conditions, historical load patterns
and battery sizes [1, 25], we have that PS , PT . In addition, the
marginal distributions P(xs ) and P(xt ) may have different support,
and so are P(ys ) and P(yt ), as shown in Figure 1.

Further, we assume there is a natural probabilistic coupling1 γ
between joint distributions Ps and Pt due to the similar aging char-
acteristics of the source and target batteries. The goal of Semi-JDOT
is to find γ and the target prediction function f : X → R through
solving the optimal transport between the joint distributions PS
and Pt , while making sure that f correctly predicts the labeled
target samples, i.e. yti = f (xti ) for all labeled samples (i = 1, . . . , l).

2.2 Joint Distribution Optimal Transport
As proposed in [5], JDOT is a framework for unsupervised domain
adaptation between joint distributions, i.e. all nt target samples are
unlabeled. Given a distance metric d(x ,x ′) onX and a loss function
L, the overall minimization formulation is shown below:

γ ∗ = argmin
γ ∈

∏
(Ps ,Pt )

∫
D

(
x s , ys ; x t , yt

)
dγ

(
x s , ys ; x t , yt

)
. (1)

where D
(
xs ,ys ;xt ,yt

)
:= αd

(
xs ,xt

)
+ L

(
ys ,yt

)
is a joint dis-

tance measure between the source and target joint distributions, α
is a positive parameter which balances the metrics in the feature
space and the label space. And γ ∗ is the optimal transport plan
which minimizes the whole cost function. Since P(yt ) is unknown
in the unsupervised setting, JDOT constructs a proxy target joint
distribution P

f
t = P(xt , f (xt )) that depends on the estimated func-

tion f . Note that, to learn the optimal coupling from empirical data,

1Formally, γ ∈ Π(Ps , Pt ) where Π(Ps , Pt ) is the set of all randon coupling of PS and
PT .
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the problem can be further written in the following form:

min
f ∈H,γ ∈Π(Ps ,P

f
t )

∑
i, j

γi, j
(
αd

(
x si , x

t
j

)
+ L

(
ysi , f

(
x tj

)))
+ λΩ(f ) (2)

where f is assumed to be in a RKHS, Ω(f ) is a regularization
term and λ is a positive parameter which balances the loss and the
complexity of function f . JDOT uses a Block Coordinate Descent
method to gain the optimal f andγ . Specifically, when f is fixed, the
problem boils down to a classical Optimal Transport (OT) problem
that can be easily solved by existing solvers such as the Sinkhorn
algorithm and stochastic algorithm [7, 10]. On the other hand, when
γ is fixed, the problem can be simplified as:

min
f ∈H

∑
i, j

γi, jL
(
ysi , f

(
x tj

))
+ λΩ(f ). (3)

Furthermore, for regression problemswhich regardL as the squared-
loss, Equation (3) can be further simplified into a regularized least-
square problem:

min
f ∈H

∑
j

1
nt

ŷj − f (
x tj

)2 + λ ∥f ∥2H (4)

where ŷj = nt
∑
i γi, jy

s
i , that is, the predicted target label is ex-

pected to approximate the weighted average of source labels, with
weights given by the optimal transport plan γ .

Though JDOT has a good performance on multiple open data
sets under the unsupervised transfer learning setting, it can not
handle distribution shift in the label space, as it is designed for
an unsupervised domain adaptation problem. Without prior infor-
mation of the target labels, it assumes that the labeling function
(conditional probability P(y | x)) the same between source and tar-
get domains under an optimal coupling. However, this assumption
may not hold in practice, as illustrated by Figure 2. Based on the
original JDOT, the optimal coupling is a horizontal displacement,
while given prior knowledge of the target labels, the coupling that
gives the correct target prediction is a displacement to the upper
right in Figure 2.

2.3 Semi-Supervised Joint Distribution
Optimal Transport

To resolve the limitation caused by label distribution shift between
the source and the target labels, we revise the basic JDOT model
into a semi-supervised model.

Given l known labels (xt1 ,y
t
1), . . . , (x

t
l ,y

t
l ) in the target domain,

the predictor f is expected to generate correct predictions on known
samples. Hence equality constraints are added to Equation (1):

min
f ∈H,γ ∈Π(Ps ,P

f
t )

∑
i, j

γi, j
(
αd

(
x si , x

t
j

)
+ L

(
ysi , f

(
x tj

)))
+ λΩ(f )

s.t. ytj = f
(
x tj

)
, for all 1 ⩽ j ⩽ l (5)

Similar to JDOT, we use Block Coordinate Descent to solve for
the optimal coupling matrix γ and prediction function f . When
f is fixed, the optimization with respect to γ mostly remains the
same. We use the Sinkhorn algorithm [7] to solve the following
entropy-regularized optimal transport problem:

min
γ ∈Π(Ps ,P

f
t )

∑
i, j

Df (x
s
i , x

t
j , y

s
i , y

t
j )γi j − λhEnt (γ ), (6)

where Ent(γ ) is the Shannon entropy regularizer. When computing
the cost function Df , we replace the proxy target label f (xtj ) by
the actual label ytj of the labeled samples:

Df (x
s
i ,x

t
j ,y

s
i ,y

t
j ) =

{
αd(xsi ,x

t
j ) + L(y

s
i ,y

t
j ) if j ≤ l

αd(xsi ,x
t
j ) + L(y

s
i , f (x

t
j )) if l < j ≤ nt

When the transport plan γ is fixed, equality constraints that
restrict the prediction function f to approximate the real target
label are added to the optimization problem for f :

min
f ∈H

nt∑
i=1

1
nt

ŷi − f (
x ti

)2 + λ ∥f ∥2
H

s.t. ytj = f
(
x tj

)
, for all 1 ⩽ j ⩽ l . (7)

The assumption that f belongs to a RKHS with kernel function
k allows us to rewrite Equation (7) as follows:

min
c

nt∑
i=1

1
nt
∥ŷi −

nt∑
j=1

c jk
(
x ti , x

t
j

) 2 + λ c ∥2
H

s.t. yti =
nt∑
j=1

c jk
(
x ti , x

t
j

)
for all 1 ≤ i ≤ l . (8)

In practice, we choose k to be the RBF kernel k
(
xti ,x

t
j

)
=

e−Γ ∥x
t
i −x

t
j ∥2 where hyperparameter Γ is learned by cross validation.

And our goal changes to learn an optimal parameter vector c∗ while
satisfying the equality constraints. Notice that, this problem can be
further written into a matrix form, with the Karush–Kuhn–Tucker
conditions to gain an analytical solution. The corresponding La-
grangian function is expressed as:

L =
(
Ŷ − Kc

)⊤ (
Ŷ − Kc

)
+ λc⊤Kc + β⊤ (TKc − Yt ) . (9)

where, Ŷ =


ŷ1
.
.
.

ŷnt

nt ×1
, K =


k (x1, x1) · · · k

(
x1, xnt

)
.
.
.

. . .
.
.
.

k
(
xnt , x1

)
· · · k

(
xnt , xnt

)
nt ×nt

T =
[
Il×l 0
0 0

]
nt ×nt

, Yt =
[
yt1 . . . ytl . . . 0

]⊤
nt ×1

where Il×l is an identity matrix of size l . By setting the first order
derivative to zero, we gain the optimal solution c∗:[

c∗

β∗

]
=

[
2(λI + K) T⊤

TK 0

]−1 [ 2Ŷ
Yt

]
. (10)

Comparedwith the basic JDOTmodel, our semi-supervised JDOT
model not only aims to find the optimal transport between the
source and target joint distributions, but also includes important
knowledge from the target domain labels. As shown in Figure 2,
predictions on these a few target labels are strongly restricted to
fit the real values, which in turn help the predictor generate the
result out of the source label range. It is worth noting that the
aforementioned formulation places infinite weight to the labeled
target instances. In practice there may be a situation when those
target labels have large empirical errors. In this case, it is better to
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Figure 2: Illustration of JDOT and Semi-JDOT on a 1D sin curve regression problem introduced in [5]. Left: Source and target
empirical marginal distributions. Middle left: JDOT prediction results and corresponding OTmatrix links. Middle right: Semi-
supervised JDOT prediction results and corresponding OT matrix links (labels are randomly sampled across the whole target
label range). Right: Semi-supervised JDOT prediction results and corresponding OTmatrix links (labels are randomly sampled
across within 80% of the target label range). Five labeled target samples are used for both full range and partial range settings.

Algorithm 1: Learning algorithm of Semi-JDOT
Input: source data set S , target data set T ;
Output: predictor f (∗) on the target data set;

1 Initialize kernel parameter γ , regularization coefficient λ, cutoff
factor rcond , balance coefficient α ;

2 k = 1;
3 while not converged do
4 if k == 1 then
5 γ k ← Solve OT problem only based on x s and x t ;
6 end
7 γ k ← Solve OT problem with fixed f k−1;
8 Calculate c∗ by Equation (10);

f k ← f k (x ti ) =
∑nt
j=1 c jk

(
x ti , x

t
j

)
;

9 k = k + 1;
10 end
11 return f ;

replace the equality constraint by a weighted penalty term in the
objective function:

min
f ∈H

nt∑
i=1

1
nt

ŷi − f
(
xti

)2+µ l∑
i=1

1
l

yti − f
(
xti

)2+λ∥ f ∥2
H
. (11)

The choice of coefficient µ ≥ 0 and λ ≥ 0 should be adjusted
by cross validation. Similar to the equality constraint version, the
analytical solution of Equation (11) can also be easily obtained using
the kernel trick.

3 EXPERIMENTS
3.1 Data Sets & baseline methods
Self-Test Pulse Battery Data Set: The first data set we use in this
paper is a self-test battery data set. While all samples from this data
set are extracted from cylindrical 18650 lithium-ion batteries, there
are two different groups of samples. One consists of 490 samples
and is regarded as the source set. The other one consists of 54
samples and is regarded as the target set. For both of these sets,

the capacity values are regarded as labels, while the voltage curves
from the pulse test are regarded as features. We assume there are 8
known labels from the target set. Detailed information about this
Pulse data set is available in Supplementary A.2.

NASAPublic BatteryData Set: The second data set is obtained
from the NASA Ames Prognostics Center of Excellence Battery
Data Set [19]. The experiments consisted of applying different ac-
celerated aging cycles to a number of commercially available 18650
lithium-ion batteries. Overall there are 41 samples in the source
set and 40 samples in the target set. The detailed information is
available in Supplementary A.2.

The baseline models can be roughly divided into two different
groups, the first one contains supervised learning methods which
only use known feature-label pairs to build a predictor on the
target data set, such as Kernel Ridge Regression (KRR) and Support
Vector Regression. The other one contains semi-supervised learning
methods, which not only use known target samples, but also try to
extract useful data structures from those samples without labels.
As far as we know, there are still limited works that implement
semi-supervised learning methods for the application of battery
capacity estimation.

Here, for the supervised learning baselines, we use KRR for
comparison, which gives state-of-the-art performance in existing
works [22]. For the semi-supervised learning baselines, we use
Semi-Supervised Regression with Co-training (COREG) [26], and
Laplacian Regularized Least Squares (LapRLS) [2] . For domain
adaptation methods, we use the basic JDOT model for comparison.

3.2 Experiment Setup
As briefly introduced in Section 3.1, the number of available labels
in the target set is limited. In real applications, people still need to
decide the way to choose the selected samples for their capacity
values. Here we propose two different ways of sampling for the
selection of known target labels. One is Full range sampling and
the other is Partial range sampling.

For Full range sampling, the known label samples are ran-
domly selected from the whole life range of the battery. Specifically,
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Table 1: Results on Pulse data set.

Mean Square Error 100% range 90% range 80% range

Semi-JDOT 0.048 0.069 0.074
KRR 0.070 0.102 0.111

COREG 0.049 0.086 0.096
LapRLS 0.041 0.097 0.119
JDOT 0.202 0.202 0.202

Table 2: Results on NASA data set.

Mean Square Error 100% range 90% range 80% range

Semi-JDOT 0.0026 0.0032 0.0024
KRR 0.0696 0.0898 0.1203

COREG 0.0102 0.0129 0.0241
LapRLS 0.0039 0.0066 0.0557
JDOT 0.0574 0.0574 0.0574

both low capacity and high capacity samples may be selected. This
is the normal situation when target set batteries are still in its ini-
tial service. These batteries could have either low or high capacity
values. And people want to gain an accurate capacity estimation to
help them decide later usage patterns. ForPartial range sampling,
the known label samples are randomly selected only from a limited
life range of the battery. This range is set to be 90% or 80% of the
nominal capacity. Thus, only samples with relatively low capacity
values may be selected. This situation happens when target sam-
ples mainly come from retired batteries. Normally, batteries used in
electrical vehicles are considered retired when their capacity values
decrease to 80% of the nominal capacity, or these batteries have
already been used beyond their designed period of usage, which
should be sent directly for recycling. Thus the case with capacity
under 80% is not common in battery capacity estimation and is not
discussed here.

3.3 Results
Tables 1 and 2 summarize the results of Semi-JDOT and the baseline
models under different data sets and experiment settings. Overall,
the unsupervised domain adaptation method JDOT performs the
worst since it does not use labeled target data. So we focus on the
comparison among other supervised or semi-supervised methods.

Under the Full range sampling setting, all models reach relatively
low MSE. Our proposed Semi-JDOT model reaches almost the same
(on Pulse data set) or even more than 30% better performance (on
NASA data set) compared with the best baseline model. When
labeled samples are selected from the lower 80% of the capacity
range, the performance of baseline models degrades significantly,
while Semi-JDOT gives best results on both data sets.

Another important variable in our experiments is number of
labels in target data set. We compare the performance of our
algorithm with other baseline methods under different number of
known target labels for both Pulse and NASA data sets in 3. The
80% partial range setting is used here since it is the more chal-
lenging scenario for cross-domain battery capacity estimation. The

Figure 3: Results for different numbers of known target la-
bels.

Figure 4: Parameters analysis of Semi-JDOT on NASA data
set.

proposed Semi-JDOT method not only surpasses all baselines but
also keeps a low and stable mean square error. Especially for su-
pervised learning methods like KRR, it can not give comparable
result even 8 times more target labels are available, which indicates
that Semi-JDOT can largely reduce the required label generation
time. Notice that, the optimal parameters for both Semi-JDOT and
other baselines are available in Supplementary A.3. Finally, the de-
termination of hyper parameters highly influence the performance
of the proposed model. We analyze how α , Γ, λ and rcond would
influence the performance of Semi-JDOT. Figure 4 shows the re-
sults when varying these parameters. Detailed discussion about
parameter determination is available in Supplementary A.3.

4 CONCLUSION
In this paper, we have introduced the cross domain battery capacity
estimation problem. Utilizing the common aging mechanisms in
batteries, we propose a semi-supervised joint distribution optimal
transport method, which can effectively deal with the distribution
shifts problem and significantly reduces the time cost for collecting
training labels. The experiments results show that our method
outperforms baselines by 10-30% under various experiment settings.
Possible future works include combining the proposed approach
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with meta learning techniques for learning from multiple battery
data sets.
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A SUPPLEMENTARY
A.1 Related Works
A.1.1 Battery Capacity Estimation. For the topic of battery capac-
ity estimation, the existed literature can be roughly divided into
model based methods and machine learning methods. For the model
based methods, people use either electrochemical models [15, 20]
or equivalent circuit models [4, 14] to represent the battery inner
mechanism. Though these models have shown great success and
enable some physical interpretation of the battery aging behaviour,
these types of models are usually difficult to establish given the
strict requirements for knowledge of the electrochemical parame-
ters, aging mechanisms, and battery properties.

Machine learning methods are gaining more and more attention,
as it has fewer requirements for deep theoretical knowledge about
battery chemistry and aging mechanisms. A study [13] employed
Relevance Vector Machine (RVM) as a probabilistic kernel regres-
sion method to learn the dependency of capacity on five selected
characteristic features. Though this model gives good results on the
continuous cycling data and still maintains a high interpretability,
it needs relatively deep domain knowledge about battery to select
effective features.

To avoid manually feature selection, a recent study [11] pro-
posed a data-driven approach to achieve health feature extraction.
Specifically, it utilized rational analysis and principal component
analysis to extract useful features from the charging profiles. Then
an adaptive RVM was implemented to gain the capacity estimation
based on the extracted features. It emphasized that the used health
features were effective under different battery operating conditions.
Moreover, another recent study [22] used a deep convolutional
neural network to automate the feature learning process on battery
charge curves, which enabled reasonable outputs for new inputs
that had never been seen during the training process.

However, as these methods are all supervised learning methods,
they need to be retrained on every battery cell once its aging trajec-
tory or experiment condition is different from the one used for for-
mer model training. Furthermore, retraining these models requires
enough capacity values, which come from the time-consuming
CC-CV test. It can be very difficult to generate a large amount of
capacity values, which is especially challenging for deep learning
models.

To overcome the drawbacks of supervised learning models, a
recent work [16] proposed a battery health assessment model based
on the semi-supervised transfer component analysis (SSTCA) al-
gorithm. Specifically, it aimed to minimize the distance between
sample distributions collected in different stages of the battery, so
that a good predictor could be built only based on the combination
of early usage data and several future usage samples. However, as in
the setting of SSTCA [18], the labeled and unlabeled data are from
different domains, and only the label values from source domain
have influence on the final mapping of the new features, it can
not address the domain shift in the label space between the source
and target domains. In the proposed Semi-JDOT method, both the
domain shift in feature and label spaces have been addressed.

A.1.2 Optimal Transport for Domain Adaptation. Optimal trans-
port was first used for domain adaptation by Courty et. al. [6]. The

Table 3: Experiment Setting for NASA data set.

NASA Source Set Target Set

Battery ID 6/18/55 29/33
Discharge Pattern 2A/2.5V 4A/2V
Sample Quantity 41 40
Feature Dimension 50 50

proposed algorithm, Optimal transport domain adaptation (OTDA)
regarded the domain adaptation problem as a graph matching prob-
lem, in which each source sample was mapped to target samples
under the constraint of marginal distribution preservation. This
method follows the covariate shift assumption, i.e. the conditional
distributions of label (given input features) is the same between
domains. Later works have relaxed this assumption by matching
the joint distributions, such as the JDOT method [5] mentioned
previously and its deep neural network extension, DeepJDOT [8].
The latter work introduces an end-to-end framework that can learn
feature embeddings using CNN and perform joint optimal trans-
port in embedded space. While DeepJDOT outperforms JDOT on
image classification tasks, we still stemmed our method from its
predecessor as capacity estimation data has a simpler structure that
can be mostly represented by a shallow model. It is also easier to
analyze analytically.

A.1.3 Semi-Supervised Domain Adaptation. OTDA [6] can deal
with the semi-supervised setting by constraining the transport
matrix such that only source and target samples with same labels
can be matched. This class-constrained idea is also used in other
semi-supervised optimal transport methods to incorporate target
labels. For example, [24] studied the semi-supervised transport
between domains with heterogeneous feature spaces, while [23]
uses optimal transport to produce pseudolabels in semi-supervised
learning.

Moreover, a recent study [21] proposed a novel Minimax Entropy
approach that adversarially optimized an adaptive few-shot model
for the semi-supervised classification problem. Specifically, this
model consists of a feature encoding network that computes the
features’ similarity to a set of estimated prototypes (representatives
of each class). Then, adaptation is achieved by alternately maximiz-
ing the conditional entropy of unlabeled target data with respect to
the classifier and minimizing it with respect to the feature encoder.

Though these methods gain state-of-the-art performance on
many public data sets, they are designed for semi-supervised clas-
sification problem and thus can not be easily transformed to deal
with regression problems.

A.2 Details about Data Sets
Self-Test Pulse Battery Data Set: Briefly speaking, the pulse test
is an effective method for evaluating the consistency among batter-
ies [20]. As it only takes 2 minutes for testing each battery cell and
the test results still contain effective information about battery per-
formance. Finding the corresponding mapping between the pulse
test curve and capacity values can largely decrease the required
time for battery capacity estimation.
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Table 4: Experiment Setting for Pulse data set.

Pulse Source Set Target Set

Nominal Capacity 2.5Ah 3.2Ah
Sampling Interval 2 cycles random
Sample Quantity 490 54
Feature Dimension 16 16

Table 5: Parameter choice for Semi-JDOT.

Parameters Optimal values (Pulse) Optimal values (NASA)

α 1 0.5
Γ 0.01 0.01
λ 0.1 1

rcond 1e-4 1e-4

For the source set, batteries with 2.5Ah nominal capacity have
experienced predefined fast-aging cycles from new to 50% nominal.
The pulse test and the CC-CV test are performed for every 2 aging
cycles to gain feature-label pairs across the whole battery life range.

For the target set, batteries have experienced the same predefined
fast-aging cycles. However, the nominal capacity is 3.2Ah. The pulse
test and the CC-CV test are performed in random intervals to gain
feature-label pairs across the whole battery life range.

NASA Public Battery Data Set: Specifically, for battery sam-
ples in NASA data set, charging patterns were kept identical for all
batteries under the CC-CV setting, while discharging patterns were
different. Here we use the No. 6,18,55 batteries to form the source
data set, and the No. 29,33 to form the target data set. As for each
battery, NASA provides data for the whole aging process at cycle
level, and we take a sample every five cycles. As a result, there are
41 samples in the source set and 40 samples in the target set.

Notice that, normally, capacity values need to be derived under
the same discharge pattern so that they can be compared to each
other. In our design, while discharge patterns for source and target
domains are different, within the target set, those capacity values
are comparable. For both Pulse and NASA data sets, there exists
domain shift problem in the marginal distributions between source
and target samples.

A.3 Supplementary Results & Analysis
Effect of α . As mentioned in Section 2.3, α is a positive parameter
in the joint cost measure termD, which balances the losses from the
feature space to the label space. This parameter does not effectively
influence the model performance on our two battery data sets. So
we use the default setting discussed in the JDOT paper [5].
Effect of Γ. Γ is the bandwidth parameter in the chosen Gaussian
kernel. As Γ defines how far the influence of a single training
example reaches, a small Γ will lead in every single training example
has a large influence on the prediction, while a large Γ only allows
nearby sample points to influence the prediction. So, there exists
a optimal range for Γ, beyond which, the model performance will
decrease.

Effect of λ. λ is the coefficient of the regularization term. As for
λ, it controls the trade-off between cost minimization and model
complexity. A small λ gives amodel that fits very well to the training
samples but gain bad performance on unseen test samples. A large λ
will cause the problem of underfitting, which gives bad predictions
on both training and test samples. So, there exists a optimal vaule
for λ.
Effect of rcond . Finally, rcond is the cutoff factor for small singular
values in matrix pseudo-inverse calculation. Singular values less
than (rcond × largest singular value) will be considered as zeros.
Normally, this parameter should be the smaller the better. However,
there exists a threshold value, below which the calculation accuracy
is enough to give good results, while a smaller rcond causes extra
calculation burden and do not improve the model performance.
rcond = 0.0001 is enough to give a good result.

Notice that the source codes are avaliable at:
https://github.com/Zhouzihao914/Few-shot-Cross-Domain-Battery-
Capacity-Estimation.

710



Few-Shot Cross Domain Battery Capacity Estimation UbiComp-ISWC ’21 Adjunct, September 21–26, 2021, Virtual, USA

Figure 5: Visualization of typical results on both NASA and Pulse data sets. (a) Pulse data set results under random sampling on
full label range. (b) Pulse data set results under random sampling on 80% label range. (c) NASA data set results under random
sampling on full label range. (d) NASA data set results under random sampling on 80% label range.
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